
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Abstract Interpretation of Automatic Differentiation
JACOB LAUREL, University of Illinois at Urbana-Champaign, USA
SIYUAN BRANT QIAN, University of Illinois at Urbana-Champaign, USA and Zhejiang University, China
GAGANDEEP SINGH, University of Illinois at Urbana-Champaign and VMware Research, USA
SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA

Despite the fact that Automatic Differentiation (AD) underlies much of machine learning, scientific computing
and graphics, static analyses of AD code has been limited. In this position paper, we argue why AD code needs
precise, general and scalable abstract interpretation and why this abstract interpretation should leverage the
specific structure inherent to AD. Lastly, we demonstrate a new use of abstract interpretation of AD to analyze
Coordinate MLPs from Graphics, attaining orders of magnitude more precision than prior work.

1 INTRODUCTION
Automatic Differentiation (AD) lies at the heart of many areas of Computer Science. Derivatives
computed by AD form the backbone of Machine learning, as well as much of Scientific Computing
[Griewank and Walther 2008] and Graphics [Bangaru et al. 2021]. Despite the ubiquity of AD
computations, there is surprisingly limited work on analyzing formal properties defined over
these derivatives. Nevertheless, there are many applications that require formal reasoning about
derivatives. For example, monotonicity (which requires that all derivatives are either strictly
positive or strictly negative) has been used as a metric for establishing algorithmic fairness [Shi
et al. 2022]. Similarly, for optimization, previous work [Deussen 2021] needed an analysis that
could certify a function was convex in a given input region using the second derivative. Similarly,
[Ramasinghe and Lucey 2022] showed the need to bound local Lipschitz constants for reasoning
about representational power of DNNs in Computer Graphics. In light of these needs and others, we
argue that developers need a unified framework for supporting all of these AD program analyses.
In this position paper, we argue why Abstract Interpretation is the most natural program analysis
technique for providing, general, precise and scalable reasoning about Automatic Differentiation.

2 ABSTRACT INTERPRETATION OF AUTOMATIC DIFFERENTIATION
Abstract Interpretation is a program analysis technique that over-approximates the set of concrete
program executions to prove useful program invariants [Cousot and Cousot 1977]. Building upon
this idea, Abstract Interpretation of Automatic Differentiation aims to prove numeric invariants
about the derivatives computed by AD. Numeric invariants such as lower and upper bounds on
derivatives can be directly used to prove various properties such as monotonicity, convexity, Lips-
chitz robustness, among others. Since AD code is ultimately just a composition of primitive numeric
operations (e.g., +, -, log, exp, etc.), one can use standard numeric abstract domains like Zonotopes
[Ghorbal et al. 2009] or Polyhedra [Singh et al. 2019]. However, despite the seeming simplicity in
applying existing numerical abstract interpretation literature to AD, multiple challenges arise.
Precision A direct application of Abstract Interpretation to AD can lead to imprecise bounds. This
issue arises because of the inherent non-linearity of derivative computations. We argue that an
abstract interpretation should be designed with this fact in mind as in Laurel et al. [2023], and

Authors’ addresses: Jacob Laurel, jlaurel2@illinois.edu, University of Illinois at Urbana-Champaign, USA; Siyuan Brant
Qian, siyuanq4@illinois.edu, University of Illinois at Urbana-Champaign, USA and Zhejiang University, China; Gagandeep
Singh, ggnds@illinois.edu, University of Illinois at Urbana-Champaign and VMware Research, USA; Sasa Misailovic,
misailo@illinois.edu, University of Illinois at Urbana-Champaign, USA.

2024. XXXX-XXXX/2024/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2024.

HTTPS://ORCID.ORG/0000-0002-4065-4063
HTTPS://ORCID.ORG/0009-0007-9574-8423
HTTPS://ORCID.ORG/0000-0002-9299-2961
HTTPS://ORCID.ORG/0000-0001-7319-8845
https://orcid.org/0000-0002-4065-4063
https://orcid.org/0009-0007-9574-8423
https://orcid.org/0009-0007-9574-8423
https://orcid.org/0000-0002-9299-2961
https://orcid.org/0000-0002-9299-2961
https://orcid.org/0000-0001-7319-8845
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

should exploit the inherent structure of the chain rule, product rule and quotient rule in order to
group multiple non-linear operations together to improve precision.
Generality.We argue that abstract interpretation of AD should simultaneously be general. However,
to obtain this generality the analysis must support higher-order AD as well as support programs
with non-differentiabilities. For the former, we argue that abstract interpretation of higher-order
AD should follow a co-design of both the abstract and concrete semantics. We argue that one should
first design a concrete semantics that lends itself to precise abstract interpretation. In particular,
prior work [Laurel et al. 2022b] has shown how to use variable sharing, whereby common sub-
expressions are eliminated across higher-derivatives in order to better capture data dependencies
between these derivatives. We argue that such an approach is necessary to improve precision and
allow developers to easily reason about their code.
Non-differentiability is another obstacle in the way of abstractly interpreting AD. To address

this challenge, we also argue for an abstract semantics based upon the Clarke Generalized Jacobian
[Laurel et al. 2022a]. The Clarke Jacobian is defined as:

𝜕𝑐 (𝑓 , x0) = co{ lim
𝑗→∞

J(𝑓 , x𝑗) : lim
𝑗→∞

x𝑗 = x0 𝑎𝑛𝑑 x𝑗 ∉ 𝑆 for all 𝑗 ∈ N} (1)

The key benefit of the Clarke Jacobian is that it is well-defined even at points of non-differentiability,
such as the ReLU at the origin. Hence a semantics defined over the Clarke Jacobian allows one to
soundly reason about branches which can introduce non-differentiablities.
Scalability Since derivative computations typically have 2-5x more operations than the original
function being differentiated [Griewank and Walther 2008], scalability is a primary concern. Given
that Convolutional Neural Networks represent a popular use case, this challenge often arises in
applied Machine learning settings. However prior work [Laurel et al. 2023] has been able to obtain
scalability by developing analyses that can make use of tensor-level operations, and thus leverage
GPU parallelism. We argue that these insights are a necessity for any AD static analysis.

3 FUTURE DIRECTIONS: ABSTRACT INTERPRETATION OF AD FOR GRAPHICS
In Graphics, Coordinate Multilayer Perceptrons (CMLPs) have emerged as a popular model for
representing images and scenes. By learning a function that maps coordinates (e.g. 𝑥,𝑦, 𝑧) to color
values (e.g. R,G,B), these networks learn an implicit representation of 2D and 3D signals and thus
are more compact than many traditional representations of images and surfaces. Recent work
[Ramasinghe and Lucey 2022] has even established a unifying theoretical framework from which
to understand the expressive power of CMLPs. They argue that the local Lipschitz constant around
an input coordinate corresponds to the network’s ability to represent visual phenomena like edges.

Motivated by their insight, we apply AD static analyzers ([Laurel et al. 2023]) to CMLPs for the
first time. Specifically, we evaluate Lipschitz bounds of a CMLP under varying perturbations over
100 coordinates in the 2D image space. Our results are shown in Fig. 1. The local Lipschitz constant
bounds produced by our technique are between 6-200× more precise than an interval-based or
Zonotope-based abstract interpretation of AD.

4 CONCLUSION
Automatic Differentiation is here to stay, hence it is imperative to develop static analyses for
derivatives. We argue that combining Abstract Interpretation with domain specific insights from
AD is the best path forward to obtaining precise, general and scalable analyses. Additionally we
show how these analyses can be adapted to Computer Graphics to obtain significant improvements.

, Vol. 1, No. 1, Article . Publication date: November 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Abstract Interpretation of Automatic Differentiation 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

102

103

104

105

Li
ps
ch
it
z
C
on

st
an

t

Zonotope
Interval
Ours

𝛼𝑚𝑎𝑥

Fig. 1. Lipschitz bounds of a CMLP under
varying perturbations over 100 coordinates
in the 2D image space. This figure presents
the average upper bounds on the local Lip-
schitz constants with respect to different
𝛼𝑚𝑎𝑥 for the interval AD, zonotope AD, and
our method.

REFERENCES
Sai Praveen Bangaru, Jesse Michel, KevinMu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley. 2021. Systematically

differentiating parametric discontinuities. ACM Transactions on Graphics (TOG) 40, 4 (2021).
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages.

Jens Deussen. 2021. Global Derivatives. Ph. D. Dissertation.
Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The zonotope abstract domain taylor1+. In International Conference

on Computer Aided Verification. 627–633.
Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation.

SIAM.
Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, and Sasa Misailovic. 2023. Synthesizing precise static analyzers for

automatic differentiation. Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023), 1964–1992.
Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic. 2022a. A Dual Number Abstraction for Static Analysis of

Clarke Jacobians. Proceedings of the ACM on Programming Languages POPL (2022), 1–30.
Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic. 2022b. A general construction

for abstract interpretation of higher-order automatic differentiation. Proceedings of the ACM on Programming Languages
6, OOPSLA2 (2022), 1007–1035.

Sameera Ramasinghe and Simon Lucey. 2022. Beyond periodicity: Towards a unifying framework for activations in
coordinate-mlps. In European Conference on Computer Vision. Springer, 142–158.

Zhouxing Shi, Yihan Wang, Huan Zhang, Zico Kolter, and Cho-Jui Hsieh. 2022. Efficiently Computing Local Lipschitz
Constants of Neural Networks via Bound Propagation. In Advances in Neural Information Processing Systems.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural networks.
Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–30.

, Vol. 1, No. 1, Article . Publication date: November 2024.

	Abstract
	1 Introduction
	2 Abstract Interpretation of Automatic Differentiation
	3 Future Directions: Abstract Interpretation of AD for Graphics
	4 Conclusion
	References

