
Jacob Laurel Teaching Statement

My Teaching Philosophy
Whether teaching freshmen the basics of induction proofs, or supervising seniors on publications, it is a
privilege to help students in the classroom and the lab. In both settings, I seek to cultivate an atmosphere
of learning, where students feel empowered to ask questions and test their own ideas. This value guides
my teaching and mentoring approaches and lays the groundwork for all my instructional experience.

Teaching Approach. To cultivate an atmosphere of learning, I strive to instill passion for the
material, to treat students as colleagues instead of subordinates, to inspire independence, and to make
myself accessible. For instance, during office hours, when students come to me with questions I first ask
“how do you think we can solve this problem?” followed by a series of Socratic questions, designed to
lead them to the answer. Students need encouragement. I phrase these questions with “we” language to
foster inclusivity but also to demonstrate by example my passion for learning in hopes of spreading that
passion to them. While this approach often caused my office hours to extend beyond the original time
slot, it was worth each additional minute to see students walk away with a sharpened understanding.
I found this approach helps students feel like respected colleagues and brings out their independent
problem solving. I felt rewarded when students pointed out this detail in my teaching evaluations when
many wrote: “Jacob takes time to provide helpful explanations”.

Teaching courses that span the full curriculum: from introductory freshman level to advanced senior
level, helped me tailor my teaching approach to match the experience of students. Despite the differences
in course levels, the fundamentals of my pedagogy remain the same. My explanations always rely on
concrete examples. Examples create clarity. I also make sure to only use examples from courses the
students have already taken, hence how I tailor my teaching to match students’ experience. But examples
need relevance. For instance, it is far easier to convince students skeptical about the need for induction
proofs when I show how these proofs help them check that their recursive functions do not run forever.

Teaching Objectives. As an instructor, my objectives remain the same across all levels. I want
students to cultivate their own independent thinking skills. To accomplish these objectives, I make lec-
tures, code reviews and recitation sections as interactive as possible. Interactivity encourages questions.
When I led discussion sections for a Discrete Structures course, I periodically paused throughout my lec-
tures to ask students for their questions. Questions create discussions. Before presenting key concepts,
I follow up students’ questions by asking “what do you think comes next?” to stimulate discussion and
hone their ability to arrive at the answer independently. Anecdotally, I noticed student engagement and
grades improved after I began to incorporate these pauses and questions into lectures.

My Teaching Experience
Throughout my PhD I eagerly served as a teaching assistant (TA) for multiple classes. My TA experience
comprises four different undergraduate courses at the University of Illinois Urbana-Champaign: CS126
Software Design Studio, CS173 Discrete Structures, CS374 Algorithms and Models of Computation and
CS421 Programming Languages and Compilers. These courses span the full undergraduate curriculum,
from freshmen (CS126) to sophomores/juniors (CS374) up to seniors (CS421).

Teaching Responsibilities. As a TA, my responsibilities included running discussion sections
(CS173, CS374), helping develop automated grading tools (CS421), leading code reviews (CS126), de-
signing homework and midterm problems and grading them (CS173) and running office hours (CS173,
CS374, CS421). I also guest lectured for CS477 Formal Software Development Methods, where I incor-
porated my research into the lesson by covering the foundations of abstract interpretation and automatic
differentiation. This guest lecture gave me my first taste of how to choose material for a lesson plan
while ensuring the chosen material remains accessible to students.

Courses I Can Teach
I envision myself teaching a variety of undergraduate and graduate courses which I describe below:

Undergraduate Courses. I would be delighted to teach upper level Programming Languages (PL)
and Compilers courses. However building a robust pipeline of future PL researchers starts even earlier.
Hence I also maintain an interest in teaching introductory programming and mathematics courses, where
I can integrate PL ideas like formal semantics into the curriculum from day one. Also, given my PL
research intersects with continuous mathematics involving numerical computations, I also have an interest
in teaching a Numerical Methods course.

Graduate Courses. My goals also include teaching graduate level courses in Programming Lan-
guages and Formal Methods. These courses would expose students to current PL research trends by
reading recent publications and would also let students pursue their own PL-related course projects.

1



I also envision designing my own course on Automatic Differentiation and Differentiable Program-
ming. Since AD lies at the intersection of multiple domains including PL, ML, Graphics, and Scientific
Computing, I plan to incorporate each of these perspectives into the class to make it as interdisciplinary
as possible. To forge these interdisciplinary connections, I want students to read AD papers from PL
conferences and read AD papers from other conferences, like ICLR, SC and SIGGRAPH. My goal is
to bring students from these diverse domains together to find the common ground needed to stimulate
interdisciplinary AD research.

My Mentoring Philosophy
I actively sought the opportunity to mentor students in research. During my time at UIUC, I had the
privilege of mentoring five different undergraduate students in research. I have published papers [DAC21,
POPL22, OOPSLA22, OOPSLA23, ICLR23] with four of these undergraduates. Furthermore, three are
now enrolled in graduate school (MIT, UT Austin, UW Madison) and a fourth is now applying for PhD
programs. These students have each expressed that their decision to pursue graduate studies was in part
due to their positive experience working with me.

Mentoring Approach. My mentoring approach strikes a balance between providing attention and
nurturing independence. To provide attention, I make myself accessible to my mentees. For example,
I will meet with undergraduates multiple times a week to discuss their results and ideas. To nurture
independence, I give mentees the freedom to tackle their assigned tasks however they think is best
instead of micromanaging their solutions. For instance, when discussing programming tasks, I often ask
undergraduates “how do you think we can solve this problem?”. Much like my teaching, this question
also serves to foster inclusivity and to show that I can learn from them just as they learn from me.

Mentoring Objectives. My end goal is to put the students I mentor on the project’s critical path.
This goal stems from my observations that students stay motivated when they feel included and take
ownership of a contribution instead of working orthogonally on tasks separate from a publication.

References

[DAC21] Laurel, Jacob, Rem Yang, Atharva Sehgal, Shubham Ugare, and Sasa Misailovic. “Statheros:
Compiler for efficient low-precision probabilistic programming”. In: 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE. 2021, pp. 787–792.

[POPL22] Laurel, Jacob, Rem Yang, Gagandeep Singh, and Sasa Misailovic. “A dual number
abstraction for static analysis of Clarke Jacobians”. In: Proceedings of the ACM on Pro-
gramming Languages 6.POPL (2022), pp. 1–30.

[OOPSLA22] Laurel, Jacob, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa
Misailovic. “A general construction for abstract interpretation of higher-order automatic
differentiation”. In: Proceedings of the ACM on Programming Languages 6.OOPSLA2
(2022).

[OOPSLA23] Laurel, Jacob, Siyuan Brant Qian, Gagandeep Singh, and Sasa Misailovic. “Synthesizing
Precise Static Analyzers for Automatic Differentiation”. In: Proceedings of the ACM on
Programming Languages OOPSLA2 (2023).

[ICLR23] Rem Yang, Laurel, Jacob, Sasa Misailovic, and Gagandeep Singh. “Provable Defense
Against Geometric Transformations”. In: The Eleventh International Conference on Learn-
ing Representations. Designated Notable - Top 25% of Accepted Papers. 2023.

2


