
Jacob Laurel Research Statement

My mission as a programming languages researcher is to build automated and mathe-
matically principled program analyses for continuous computations. Continuous computations
comprise any program that uses continuous mathematics like probability theory or calculus. These com-
putations pervade computer science: from machine learning (ML) to embedded systems to scientific
computing and beyond. However, programmers must ensure the programs that implement these con-
tinuous computations remain efficient and robust. For example, how can a scientist check that for a
range of physical conditions, a computational climate model is not overly sensitive? Likewise, how can
an auditor ensure that a ML hiring model monotonically chooses more qualified candidates over less
qualified ones? By harnessing the power of continuous mathematics, one can reframe these questions
as properties about certified bounds on derivatives. However, without advanced mathematical training,
programmers may lack the expertise needed to formalize and verify these properties. An opportunity
arises. Can programming languages research automate these tasks with principled program analyses?

My research answers this question by developing automated program analyses in two popular pro-
gramming language paradigms that expose continuous computations: Differentiable Programming
and Probabilistic Programming. These analyses focus on certifying robustness [POPL22, OOP-
SLA22, OOPSLA23, AURA-SUB*, ICLR23] of continuous computations that require trustworthiness
and improving performance [ESOP20, DAC21, RV21, DATE23, STTT23] of continuous computations
that tolerate approximation. While decades of program analyses used foundations built atop discrete
mathematics, these analyses are inapplicable when programs use continuous mathematics. By leaning
into continuity, my work capitalizes on the continuous mathematical structure that precludes past tech-
niques. These insights enable my work to bridge the gap between the capabilities of yesterday’s program
analyses and the needs of tomorrow’s programmers. My core research contributions include:

1. The first abstract interpretation of Automatic Differentiation whose generality supports non-
differentiable functions [POPL22] and higher derivatives [OOPSLA22], whose precision is optimized
[OOPSLA23] and whose scalability extends to programs with hundreds of thousands of derivatives.

2. The first approach to apply continuous relaxations to probabilistic programs [ESOP20] and compile
these programs to low precision hardware [DAC21, DATE23] to make inference up to 27× faster.

In addition to my research appearing in top conferences in programming languages (POPL, OOPSLA,
ESOP), my work has appeared in top conferences in embedded systems/design automation (DAC, DATE)
and machine learning (ICLR, CVPR). My near-term ambitions are to build general, precise and scalable
program analyses for continuous computations in emerging domains by forging connections with other
communities like machine learning and scientific computing. My long-term ambitions are to harness the
power of continuous mathematics to expand the foundations of program analysis.

Differentiable Programming and Automatic Differentiation
Differentiable Programming which includes Automatic Differentiation (AD), serves as the backbone for
machine learning and simultaneously pervades many other domains including graphics and scientific
computing. Despite AD’s ubiquity, automated formal reasoning about the derivatives AD computes has
lagged. This absence of formal reasoning about AD code is problematic. For instance, in TinyML, when
computing gradients in low precision datatypes, one must ensure the gradient’s range does not overflow
past the datatype’s dynamic range, since overflows would ruin a computation’s result. Additionally, in
high-stakes social settings, ML systems may automate hiring decisions. Thus one must ensure that if
two people are similarly qualified, but one has more experience, the more experienced person should be
hired, otherwise that system would spread bias. Fairness in this setting is formalized as a monotonicity
condition on the experience level, which equivalently means all derivatives are strictly positive.

Thus practitioners across multiple domains including both TinyML and trustworthy ML need answers
to questions like “is the largest possible gradient always less than some threshold?” or “are all the
computed derivatives strictly positive?”. Despite the need, these questions are severely understudied.

My work answers these questions by combining abstract interpretation with AD. Abstract inter-
pretation [Cousot] is a scalable and general program analysis framework that allows programmers to
automatically reason about sets of program inputs instead of a single input. By merging abstract in-
terpretation and AD, my work helps programmers automate the verification of formal properties like
monotonicity that are defined over sets of gradients. Hence, my research builds a unified automated
framework that gives programmers these formal guarantees and removes the burden of needing to know
all the intricacies of calculus. Further, as in the case of monotonicity, by analyzing and verifying prop-
erties over a program’s set of gradients, my work can verify properties about the original program itself.

1

Despite the apparent simplicity in applying existing numerical abstract interpreters to AD, the fun-
damental challenges of program analysis emerge: how does one make sure the analysis is general, precise,
and scalable? In a sequence of three papers [POPL22, OOPSLA22, OOPSLA23] my research directly
tackles these challenges and sets the foundation of static analysis of AD.

Generality. Formal, compositional reasoning about the semantics of differentiable programs presents
challenges because computer programs are often non-differentiable. These points of non-differentiability
stem from branch statements in the program. These mathematical pathologies in the program mean one
thing: to prove formal guarantees about AD code, more generalized types of derivatives are needed.

To generalize abstract interpretation of AD to support non-differentiability, I built DeepJ [POPL22].
DeepJ grapples with non-differentiability by defining the first abstract semantics based on Clarke Gener-
alized Jacobians. This generality allows DeepJ to reason about gradient properties for both differentiable
and non-differentiable (but Lipschitz continuous) functions. This generality also means DeepJ is the first
to obtain Lispchitz robustness guarantees on deep neural networks (DNNs) that are adversarially per-
turbed by non-differentiable perturbations like image rotations, a threat model no prior work addressed.

The need for generality also extends to higher derivatives and richer abstract domains. Formal
properties are often defined over higher derivatives. For instance, the convexity of a function (e.g., a
DNN), is a formal property defined over second derivatives. Previously, a programmer would have to
define an AD semantics for the desired order of derivative and then prove the corresponding abstract
semantics sound for a chosen abstract domain. To compute a different order of derivative or use a different
abstract domain, all proofs would need to redone which puts a heavy burden on the programmer. To
lift this burden, I developed the first general construction for abstract interpretation of higher-order AD
[OOPSLA22]. My work creates a general framework for building sound abstract interpreters for arbitrary
orders of derivatives and general classes of abstract domains. This approach removes the programmer’s
burden of reformalizing their abstract semantics each time they want to use a different abstract domain
or compute a different derivative. Instead, programmers only specify a small set of abstract transformers
for primitive functions (e.g. exp(x)) and the highest desired derivative to obtain both a sound concrete
and a sound abstract semantics which abstractly interprets all derivatives up to that chosen order.

Precision. The general construction I developed in [OOPSLA22] revealed the crucial need to ab-
stractly interpret AD precisely. Obtaining precision is challenging since AD computations are highly

nonlinear. For instance the quotient rule of calculus
(f(x)
g(x)

)′
= f ′(x)g(x)−f(x)g′(x)

g(x)2 involves four nonlinear

operations: three multiplications and a division. However, decades of abstract interpretation literature
focused on linear functions. Due to this lack of precise abstractions for nonlinearities, a naive abstract
interpretation of AD might fail to verify properties like monotonicity due to imprecision. A fundamental
question arises: how does one tame the vast nonlinearity in AD that plagues abstract interpretation?

To answer this question, I developed Pasado [OOPSLA23], an automated technique to synthesize
precise static analyzers tailored to the structure of AD. By formulating abstract interpretation as a
tractable optimization problem, Pasado optimally solves for precise abstractions of groups of multiple
nonlinear operations corresponding to the chain rule, product rule, and quotient rule. Grouping nonlinear
operations together prevents imprecision from compounding. Since these rules underlie forward and
reverse mode AD, Pasado abstractly interprets both modes. Compared to the prior state of the art, this
precision allows Pasado to compute local Lipschitz constant bounds that are over 2,000× more precise.

Scalability. Since derivative computations in AD typically have 2×-5× more operations than the
original function that was differentiated, scalability becomes a primary concern. My work on Pasado
addresses this concern by mathematically reducing challenging high dimensional optimization problems to
1D optimization subproblems that are efficiently solvable. Furthermore, I showed how these subproblems
can be efficiently parallelized across GPUs. Thus, Pasado’s optimization-based AD abstraction scales to
large convolutional networks which require hundreds of thousands of derivative computations.

Probabilistic Programming
Probabilistic Programming has emerged as a powerful paradigm that lets programmers statistically model
uncertainty with intuitive programs. Programmers can write statements like x := Gaussian(m,s);

observe(x==1.2); without needing to know the internals of how to implement Bayesian inference.
Nonetheless, difficulties arise when automating inference through the programming language. Indeed,
one reason why the adoption of probabilistic modelling has lagged other ML techniques is that inference
code is often prohibitively slow. To improve inference speed, faster approximate inference methods have
been developed. However, it remains difficult to ensure that these approximations preserve accuracy.
Additionally, one must ensure that the probabilistic programming language generates efficient code for
these inference routines. One may also require exact instead of approximate inference to certify formal

2

guarantees on the probabilistic program’s behavior. The situation for exact inference is even worse: it is
often intractable for continuous distributions due to the need to solve complicated integrals.

To tackle these challenges, my research developed the following solutions: 1) automated program
transformations that apply continuous relaxations to probabilistic programs to improve inference speed,
2) principled compilation of approximate inference to reduced precision arithmetic for generating efficient
code on resource constrained devices, and 3) abstract interpretation of probabilistic programs.

Continuous Relaxations of Probabilistic Programs. Inference with continuous distributions is
often more efficient than with discrete ones. This idea led me to develop Leios [ESOP20]. Leios automat-
ically applies continuous approximations to discrete probabilistic programs to improve inference speed.
By leveraging ideas from continuous mathematics, Leios replaces all discrete probability distributions
with continuous approximations such as approximating a Binomial distribution with a Gaussian distri-
bution. Leios then corrects the conditionals to account for the approximation. This insight improved
the speed of Bayesian inference by 4.8× on average, with negligible accuracy loss.

Reduced Precision Probabilistic Programming on Embedded Devices. The effectiveness of
Leios led me to ask how mathematical approximations can optimize the lower levels of the computa-
tional stack to generate fast inference code. Thus, my subsequent work Statheros [DAC21] developed a
compiler for reduced precision, fixed-point arithmetic probabilistic programming. Statheros was the first
probabilistic programming work to target low-resource embedded systems. By generating fixed-point in-
stead of floating point versions of MCMC inference routines, Statheros’ compilation technique improved
the speed of inference by up to 27× on embedded devices without hardware floating point units.

Building upon both Statheros and my work in differentiable programming, I then developed the
first compiler for reduced precision fixed-point variational inference on embedded systems with ViX
[DATE23]. Performing variational inference in reduced precision requires computing all gradients in
low precision datatypes. To avoid errors, one must ensure the gradient’s range does not overflow past
the datatype’s dynamic range: an assurance that I provided with the AD static analysis techniques I
developed in DeepJ [POPL22]. By selecting low-precision types that also avoid overflows, ViX achieved
speedups of 8.15× and 22.67× over 32-bit and 64-bit floating point types respectively.

By enabling efficient Bayesian inference on embedded devices, my work opens up the potential to
support fast probabilistic inference in applications like TinyML, robotics or cyber-physical systems.

Abstract Interpretation of Probabilistic Programs. Often, one needs exact inference results
to formally verify properties of probabilistic programs. However, exact inference scales poorly, hence
practitioners settle for lower and upper bounds on probabilities for verification. Moreover, these bounds
can be too loose to be useful. Additionally, previous works only verify properties of a single probability
distribution, but cannot verify properties for sets of distributions. This limitation prevented all prior
works from analyzing the effects of dataset perturbations on probabilistic programs.

To address these challenges, in work currently under submission [AURA-SUB*], I co-developed
AURA, the first abstract interpretation for probabilistic programs subject to data perturbations. By
leveraging several abstract interpretation insights of [OOPSLA23], AURA reformulates the problem of
certifying posterior bounds as a tractable optimization problem. This reformulation leverages insights
from continuous optimization, namely pseudoconcavity, to provably find the tightest posterior bounds.
AURA’s generality further supports the new setting where the data inside observe() statements can be
perturbed. Hence AURA is the first work to prove robustness for an infinite set of posterior distributions.

Other Research Contributions
In addition to differentiable and probabilistic programming, my focus on continuous computations has
led to additional research contributions in both approximate computing and computer vision.

Program Analysis for Approximate Computing. Continuous computations represent an ideal
application for approximate computing since coarser numerical approximations can improve performance.
Nonetheless, ensuring that these approximated programs remain provably robust is critical yet challeng-
ing. To address this difficulty, I co-developed Diamont, a runtime system for enabling aggressive program
optimizations [RV21] by dynamically tracking certified bounds over approximate numeric expressions.
Additionally, I extended this work to verify algorithmic fairness at runtime [STTT23].

Computer Vision. I have also published in computer vision (CV) [CVPR17] which gave me useful
domain knowledge to inform my work in programming languages. My CV knowledge even led me to
incorporate many vision neural networks as benchmarks in my AD research [POPL22, OOPSLA23].
Applying program analysis ideas to CV also led me to supervise an undergraduate student on a project
that built fast verifiers to certify geometric robustness of vision networks [ICLR23]. Armed with abstract
interpretation ideas from PL, we built the first scalable verifier for general geometric perturbations like

3

image rotations. In addition to substantial precision improvements, this work obtained up to 42, 600×
faster verification times than prior work, which led to orders of magnitude better scalability. These
results led this paper to win a notable designation (top 25% of papers) at ICLR 2023.

Future Research Program
The program analyses I built for both probabilistic and differentiable computations have proven that con-
tinuous mathematics can be successfully integrated into foundational programming languages research.
Looking ahead, continuous computations proliferate in emerging applications. Between the rising tides
of AI, the growing importance of scientific computing (e.g., climate change modeling), and the increasing
human reliance on autonomous and cyber-physical systems, programs that need continuous mathemat-
ics are inescapable. In light of these trends, my work is ideally positioned to provide new analyses and
abstractions to give programmers the performance and assurances they need.

Additionally, between the NSF and DOE funding new differentiable programming initiatives within
the past year and Google investing heavily in the JAX AD framework, current trends showcase how
AD research already attracts funding from many sources. My research has even led to me assisting my
advisor Sasa Misailovic and Professor Gagandeep Singh with the submission of a NSF Core Medium
grant proposal this past October on analyzing gradients for trustworthy AI.

Building upon the skills I cultivated over my past work and the emerging needs of programmers, my
future research agenda aims to address the following questions:

Program Analyses for Differentiable and Probabilistic Scientific Computing. Many of
the most impactful uses of continuous computations come from scientific models, such as those used to
study the spread of pandemics or the impacts of climate change. Interestingly, AD was developed by the
same scientific computing community to help them differentiate the source code of their models! Hence,
scientific computing including scientific ML, represents an attractive target for the program analyses I
developed to ensure robust AD. I have already started to explore this intersection. My recent work Pasado
[OOPSLA23] performed robust AD-based sensitivity analysis of numerical ODE solutions of both climate
and chemistry models to prove monotonicity with respect to physical parameters. However, a gap exists
between the PL community and scientific computing. I aim to bridge this gap by applying PL insights like
verification or even program synthesis to AD programs in scientific computing. Beyond collaborations
with scientific computing faculty, I aim to leverage my experience working at NASA Langley to build
collaborations with government labs which represent another fertile ground for scientific computing.

Usability of Differentiable Programming. While many AD tools exist, there is limited work that
studies the end user experience of AD. Indeed, many user errors of AD are under-studied [Hückelheim et
al.]. One avenue for collaboration with software engineering researchers, is to customize the AD analyses
I developed to try to check for these user errors and to try to find bugs in AD programs.

Differentiable and Probabilistic Analyses for Cyber-Physical Systems. Robotics and cyber-
physical systems, including both Edge and IoT devices, regularly compute with continuous quantities
that model the physical world. Many of these continuous computations involve computing probabilities
(e.g. Kalman filters) but also derivatives for system dynamics. Ensuring the safe autonomy of these
systems reduces to obtaining formal guarantees on these continuous computations. I aim to specialize
the techniques I developed for ensuring robust AD and robust Bayesian inference to the specific com-
putational patterns found in cyber-physical systems. Furthermore, the embedded processors running on
cyber-physical systems and robotics platforms are often resource-constrained. Thus my research on low
precision probabilistic programming [DAC21, DATE23] serves as a springboard to exploit reduced pre-
cision for other continuous computations in embedded systems. To realize this ambition, I plan to forge
collaborations with the embedded/cyber-physical systems, edge computing and robotics communities.

Interpretable and Robust Machine Learning. I aim to extend my analyses of derivative proper-
ties (e.g., monotonicity) to differentiable ML models beyond neural networks. Specifically, I plan to build
upon my work on probabilistic systems to develop new analysis techniques and formalize new properties
for differentiable generative models like Normalizing Flows and Variational Autoencoders.

Foundational Program Analyses. In addition to the abstract interpreters I developed, AD can
benefit from other verification techniques. For instance, Hoare logic lets programmers work backwards
and reason about the set of inputs that lead to desired outputs. Thus, by adapting Hoare logic to
AD, one could answer questions like “what is the largest set of inputs for which a neural network is still
guaranteed to behave monotonically?”. This effort will likely require incorporating derivative information
into solvers. Hence, verification techniques such as Hoare logics, type systems, or SMT solvers offer
additional pathways to develop foundational program analysis of continuous computations.

4

References

[Cousot] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice model
for static analysis of programs”. In: Proc. 4th ACM Symp. on Principles of Pro-
gramming Languages. 1977.

[CVPR17] Aidean Sharghi, Laurel, Jacob, and Boqing Gong. “Query-focused video summa-
rization: Dataset, evaluation, and a memory network based approach”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2017.

[ESOP20] Laurel, Jacob and Sasa Misailovic. “Continualization of probabilistic programs
with correction”. In: Programming Languages and Systems: 29th European Sympo-
sium on Programming, ESOP 2020. 2020.

[RV21] Vimuth Fernando, Keyur Joshi, Laurel, Jacob, and Sasa Misailovic. “Diamont:
Dynamic Monitoring of Uncertainty for Distributed Asynchronous Programs”. In:
Runtime Verification: 21st International Conference, RV 2021. 2021.

[DAC21] Laurel, Jacob, Rem Yang, Atharva Sehgal, Shubham Ugare, and Sasa Misailovic.
“Statheros: Compiler for efficient low-precision probabilistic programming”. In: 2021
58th ACM/IEEE Design Automation Conference (DAC). 2021.

[POPL22] Laurel, Jacob, Rem Yang, Gagandeep Singh, and Sasa Misailovic. “A dual number
abstraction for static analysis of Clarke Jacobians”. In: Proceedings of the ACM on
Programming Languages 6.POPL (2022).

[OOPSLA22] Laurel, Jacob, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and
Sasa Misailovic. “A general construction for abstract interpretation of higher-order
automatic differentiation”. In: Proceedings of the ACM on Programming Languages
6.OOPSLA2 (2022).

[STTT23] Vimuth Fernando, Keyur Joshi, Laurel, Jacob, and Sasa Misailovic. “Diamont:
dynamic monitoring of uncertainty for distributed asynchronous programs”. In:
International Journal on Software Tools for Technology Transfer (2023).

[AURA-SUB*] Zixin Huang, Laurel, Jacob, Saikat Dutta, and Sasa Misailovic. “Precise Abstract
Interpretation of Probabilistic Programs with Interval Data Uncertainty”. In: Under
Submission (2023).

[Hückelheim et al.] Jan Hückelheim, Harshitha Menon, William Moses, Bruce Christianson, Paul Hov-
land, and Laurent Hascoët. “Understanding Automatic Differentiation Pitfalls”. In:
arXiv preprint arXiv:2305.07546 (2023).

[OOPSLA23] Laurel, Jacob, Siyuan Brant Qian, Gagandeep Singh, and Sasa Misailovic. “Syn-
thesizing Precise Static Analyzers for Automatic Differentiation”. In: Proceedings
of the ACM on Programming Languages OOPSLA2 (2023).

[DATE23] Ashitabh Misra, Laurel, Jacob, and Sasa Misailovic. “ViX: Analysis-driven Com-
piler for Efficient Low-Precision Variational Inference”. In: 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE). 2023.

[ICLR23] Rem Yang, Laurel, Jacob, Sasa Misailovic, and Gagandeep Singh. “Provable De-
fense Against Geometric Transformations”. In: The Eleventh International Confer-
ence on Learning Representations.Designated Notable - Top 25% of Accepted
Papers. 2023.

5

