
Continualization of Probabilistic Programs
With Correction

Jacob Laurel(B) and Sasa Misailovic

University of Illinois Urbana-Champaign, Department of Computer Science
Urbana, Illinois 61820, USA

{jlaurel2,misailo}@illinois.edu

Abstract. Probabilistic Programming offers a concise way to represent
stochastic models and perform automated statistical inference. However,
many real-world models have discrete or hybrid discrete-continuous dis-
tributions, for which existing tools may suffer non-trivial limitations.
Inference and parameter estimation can be exceedingly slow for these
models because many inference algorithms compute results faster (or
exclusively) when the distributions being inferred are continuous. To
address this discrepancy, this paper presents Leios. Leios is the first ap-
proach for systematically approximating arbitrary probabilistic programs
that have discrete, or hybrid discrete-continuous random variables. The
approximate programs have all their variables fully continualized. We
show that once we have the fully continuous approximate program, we
can perform inference and parameter estimation faster by exploiting the
existing support that many languages offer for continuous distributions.
Furthermore, we show that the estimates obtained when performing in-
ference and parameter estimation on the continuous approximation are
still comparably close to both the true parameter values and the esti-
mates obtained when performing inference on the original model.

Keywords: Probabilistic Programming · Program Transformation · Continuity
· Parameter Synthesis · Program Approximation

1 Introduction

Probabilistic programming languages (PPLs) offer an intuitive way to model
uncertainty by representing complex probability models as simple programs [28].
A probabilistic programming system then performs fully automated statistical
inference on this program by conditioning on observed data, to obtain a posterior
distribution, all while hiding the intricate details of this inference process.

Probabilistic inference is a computationally hard task, even for programs
containing only Bernoulli distributions (#P-complete [18]), but prior work has
shown that for many inference algorithms, continuous and smooth distributions
(such as Gaussians) can be significantly easier to handle than the distributions
having discrete components or discontinuities in their densities [15, 53, 52, 9, 56].

2 J. Laurel et al.

Fig. 1: Overview of Leios

However, many popular Bayesian models can have distributions which are
discrete or hybrid discrete-continuous mixtures (denoted simply as “hybrid”)
leading to computationally inefficient inference for much the same reason. Par-
ticularly when the observed variable is a discrete-continuous mixture, inference
may fail altogether [65]. Likewise even if the observed variable and likelihood
are continuous, the prior or important latent variables, may be discrete (e.g.,
Binomial) leading to an equally difficult discrete inference problem [61, 50].

In fact, a number of popular inference algorithms such as Hamiltonian Monte
Carlo [48], NUTS [31, 50], or versions of Variational Inference (VI) [9] only work
for restricted classes of programs (e.g. by requiring each latent be continuous)
to avoid these problems. Furthermore, we cannot always marginalize away the
program’s discrete component since it is often precisely the one we are interested
in. Even if the parameter was one which could be safely marginalized out, doing
so may require the programmer to use advanced domain knowledge to analyti-
cally solve and obtain a new model and re-write the program completely, which
can be well beyond the abilities of the average PPL user.
Problem statement: We address the question of how to accurately approx-
imate the semantics of a probabilistic program P whose prior or likelihood is
either discrete or hybrid, with a new program PC , where all variables follow
continuous distributions, so that we can exploit the aforementioned inference
algorithms to improve inference in an easy, off-the-shelf fashion.

While a programmer could manually rewrite the probabilistic program or
model and apply approximations in an ad hoc manner, such as simply adding
Gaussian noise to each variable, this would be neither sufficient nor wise. For
instance, it has been shown that when a model contains Gaussians, how they
are programatically written and parametrized can impact the inference time and
quality [29, 5]. Also, by not correcting for continuity in the program’s branch
conditions, one could significantly alter the probability of executing a particular
program branch, and hence alter the overall distribution represented by the
probabilistic program.
Leios: We introduce a fully automated program analysis framework to continu-
alize probabilistic programs for significantly improved inference performance, es-
pecially in cases where inference was originally intractable or prohibitively slow.

An input to Leios is a probabilistic program, which consists of (1) model
that specifies the prior distributions and how the latent variables are related,

Continualization of Probabilistic Programs With Correction 3

(2) specifications of observable variables, and (3) specifications of data sets. Leios
transforms the model, given the set of the observable variables. This model is
then substituted back into the original program to produce a fully continuous
probabilistic program leading to greatly improved inference. Furthermore the
approximated program can easily be reused with different, unseen data.

Figure 1 presents the main workflow of Leios :

– Distribution transformer and Boolean predicate correction: Leios first finds
individual discrete distribution sample statements to replace with continu-
ous approximations based on known convergence theorems that specifically
match the distributions’ first moments [23]. Leios then performs a dataflow
analysis to identify and then correct Boolean predicates in branches to best
preserve the original program’s probabilistic control flow. To correct Boolean
predicates, we convert the program to a sketch and fill in the predicates with
holes that will then be synthesized with the optimal values. We ensure that
the distribution of the model’s observed variables is fully continuous with
a differentiable density function, by transforming it using an approach that
adapts Smooth Interpretation [14] to probabilistic programs. We describe
the transformations in Section 4.

– Parameter Synthesizer: Leios determines the optimal parameters which min-
imize a numerical approximation of the Wasserstein Distance to fill in the
holes in the program sketch. This step of the algorithm can be thought of as
a “training phase” much like in machine learning, and we need only perform
it once for a given program, regardless of the number of times we will later
perform inference on different data sets. These parameters correspond to
continuity correction factors in classical probability theory [23]. We describe
the synthesizer in Section 5.

Contributions: This paper makes the following main contributions:

– Concept: To the best of our knowledge, Leios is the first technique to auto-
mate program transformations that approximate discrete or hybrid discrete-
continuous probabilistic programs with fully continuous ones to improve in-
ference. It combines insights from probability theory, program analysis, com-
piler autotuning, and machine learning.

– Program Transformation: Leios implements a set of transformations on
distributions and the conditional statements that can produce provably con-
tinuous probabilistic programs that approximate the original ones.

– Parameter Synthesis: We present a synthesis algorithm that corrects the
probabilities of taking specific branches in the probabilistic program and
improves the overall inference accuracy.

– Evaluation: We evaluated Leios on a set of ten benchmarks from existing
literature and two systems, WebPPL (using MCMC sampling) and Pyro
(using stochastic variational inference). The results demonstrate that Leios
can achieve a substantial decrease in inference time compared to the origi-
nal model, while still achieving high inference accuracy. We also show how
a continualized program allows for easy off-the-shelf inference that is not
always readily available to discrete or hybrid models.

4 J. Laurel et al.

1 Data := [12 , 8 , . . .] ;
2

3 Model {
4 p r i o r = Uniform (20 ,50) ;
5 Rec ru i t e r s = Poisson (p r i o r) ;
6

7 perfGPA = 4 ;
8 regGPA = 4∗Beta (7 , 3) ;
9 GPA = Mix(perfGPA , . 0 5 , regGPA , . 9 5)

10

11 i f (GPA == 4) {
12 In t e rv i ews = Bin (Recru i t e r s , . 9) ;
13 } else i f (GPA > 3 . 5) {
14 In t e rv i ews = Bin (Recru i t e r s , . 6) ;
15 } else {
16 In t e rv i ews = Bin (Recru i t e r s , . 5) ;
17 }
18

19 Of f e r s = Bin (Interv i ews , 0 . 4) ;
20 }
21

22 for d in Data {
23 factor (Of fe r s , d) ;
24 }
25

26 return p r i o r ;

(a)

1 Model {
2 p r i o r = Uniform (20 ,50) ;
3 mu p = prior;
4 sigma p = sqrt(prior);
5 Rec ru i t e r s = Gaussian(mu p,sigma p) ;

6

7 perfGPA = Gaussian(4,β) ;
8 regGPA = 4∗Beta (7 , 3) ;
9 GPA = Mix(perfGPA , . 0 5 , regGPA , . 9 5)

10

11 i f (4 - θ1 < GPA < 4+ θ2){
12 mu = Recruiters ∗ 0.9;
13 sigma = sqrt(Recruiters∗0.9∗0.1);
14 In t e rv i ews = Gaussian(mu,sigma) ;
15 } else i f (GPA > 3.5 + θ3){
16 mu = Recruiters ∗ 0.6;
17 sigma= sqrt(Recruiters∗0.6∗0.4);
18 In t e rv i ews = Gaussian(mu,sigma) ;
19 } else {
20 mu = Recruiters ∗ 0.5;
21 sigma = sqrt(Recruiters∗0.5∗0.5);
22 In t e rv i ews = Gaussian(mu,sigma) ;
23 }
24 mu2 = Interviews ∗ 0.4;
25 sigma2 = sqrt(Interviews∗0.4∗0.6);
26 Of f e r s = Gaussian(mu2,sigma2) ;
27 }

(b)

Fig. 2: (a) Program P and (b) the Continualized Model Sketch

2 Example
Figure 2 (a) presents a program that infers the parameters of the distribution
modeling the number of recruiters coming to a recruiting fair given both the
number of offers multiple students receive (line 1). As the number of recruiters
may vary year to year, we model this count as a Poisson distribution (line 5).
However, to accurately quantify how much this count varies year to year, we
want to estimate the unknown parameter of this Poisson variable. We thus place
a uniform prior over this parameter (line 4).

The example represents the student GPAs in lines 7-9: it is either a perfect
4.0 score or any number between 0 and 4. We model the perfect GPA with a dis-
crete distribution that has all the probability mass at 4.0 (line 7). To model the
imperfect GPA, we use a Beta distribution (line 8), scaled by 4 to lie in the range
[0.0, 4.0]. Finally, the distribution of the GPAs is a mixture of these two compo-
nents (line 9). Our mixture assumes that 5% of students obtain perfect GPAs.

Because the GPA impacts the number of interviews a student receives, our
model incorporates control flow where each branch captures the distribution
of interviews received, conditioned on the GPA being in a certain range (lines
11-17). Each student’s resume is available to all recruiters and each recruiter
can request an interview or not, hence all three of the Interviews distributions
follow a Binomial distribution (here denoted as bin) with the same n (number of
recruiters) but with different probabilities (higher probabilities for higher GPAs).
From the factor statement (line 23) we see that the Offers variable governs the

Continualization of Probabilistic Programs With Correction 5

distribution of the observed data, hence it is the observed variable. Furthermore,
given the values of all latent variables, Offers follows a Binomial distribution
(line 19), hence the likelihood function of this program is discrete.

This program poses several challenges for inference. First, it contains dis-
crete latent variables (such as the Binomials), which are expensive to sample
from or rule out certain inference methods [26]. Second, it contains a hybrid
discrete-continuous distribution governing the student GPA, and such hybrid
distributions are challenging for inference algorithms [65]. Third, the model has
complex control flow introduced by the if statements, making the observable
data follow a (potentially multimodal) mixture distribution, which is yet an-
other obstacle to efficient inference [43, 17]. Lastly, the discrete distribution of
the observed data and likelihood also hinder the inference efficiency [61, 50, 59].

2.1 Continualization

Our approach starts from the observation that inference with continuous distri-
butions is often more efficient for several inference algorithms [53, 52, 56]. Leios
first continualizes discrete and hybrid distributions in the original model. Start-
ing in line 5 in Figure 2 (b), we approximate the Poisson variable with a Gaussian
using a classical result [16], hence relaxing the constraint that the number of re-
cruiters be an integer. (For ease of presentation we created new variables mu p

and sigma p corresponding to the parameters of the approximation; Leios sim-
ply inlines these.) We next approximate the discrete component of the GPA
hybrid mixture distribution by a Gaussian centered at 4 and small tunable stan-
dard deviation β (line 7). The GPA is now a mixture of two continuous distri-
butions. We then transform all of the Binomials to Gaussians (lines 14, 18, 22,
and 26) using another classic approximation [23].

Finally, Leios smooths the observed variables by a Gaussian to ensure the
likelihood function is both fully continuous and differentiable. In this example
we see that the approximation of the Binomial already makes the distribution of
Offers (given all latent values) a Gaussian, hence this final step is not needed.

After continualization, the GPA cannot be exactly 4.0, thus we need to re-
pair the first conditional branch of the continualized program. In line 11, we re-
place the exact equality predicate with the interval predicate 4-θ1 < GPA < 4+θ2
where each θ is a hole whose value Leios will synthesize. Leios finds all such
branching predicates by tracking transitive data dependencies of all continual-
ized variables.

2.2 Parameter Synthesis

Our continuous approximation should be close enough to the original model
such that upon performing inference on the approximation, the estimations ob-
tained will also be close to the ground-truth values. Hence Leios needs to ensure
that the values synthesized for each θ are such that for every conditional state-
ment, the probability of executing the true branch in the continualized program
roughly matches the original (ensuring similar likelihoods). In probability the-
ory, this value has a natural interpretation as a continuity correction factor as

6 J. Laurel et al.

1 Model {
2 p r i o r = Uniform (20 ,50) ;
3 mu p = pr i o r ;
4 sigma p = sq r t (p r i o r) ;
5 Rec ru i t e r s = Gaussian (mu p, sigma p) ;
6

7 perfGPA = Gaussian (4 , 0.1) ;
8 regGPA = 4∗Beta (7 , 3) ;
9 GPA = Mix(perfGPA , . 0 5 , regGPA , . 9 5) ;

10

11 i f (3.99999 < GPA < 4.95208){
12 mu = Rec ru i t e r s ∗ 0 . 9 ;
13 sigma = sqr t (Rec ru i t e r s ∗0 . 9∗0 . 1) ;
14 In t e rv i ews = Gaussian (mu, sigma) ;
15 } else i f (GPA > 3.500122){
16 mu = Rec ru i t e r s ∗ 0 . 6 ;
17 sigma = sqr t (Rec ru i t e r s ∗0 . 6∗0 . 4) ;
18 In t e rv i ews = Gaussian (mu, sigma) ;}
19 } else {
20 mu = Rec ru i t e r s ∗ 0 . 5 ;
21 sigma = sqr t (Rec ru i t e r s ∗0 . 5∗0 . 5) ;
22 In t e rv i ews = Gaussian (mu, sigma) ;
23 }
24

25 mu2 = Inte rv i ews ∗ 0 . 4 ;
26 sigma2 = sq r t (In t e rv i ews ∗0 . 4∗0 . 6) ;
27 Of f e r s = Gaussian (mu2 , sigma2) ;
28 }

(a)

(b)

Fig. 3: (a) the fully continualized model and (b) Convergence of the Synthesis
Step for multiple β.

it “corrects’ the probability of a predicate being true after applying continuous
approximations. For the (GPA == 4) condition, we might think about using a
typical continuity correction factor of 0.5 [23], and transform it to 4-0.5 < GPA

< 4+0.5. However, in that case, the second else if (GPA > 3.5) branch would
never execute, thus significantly changing the program’s semantics (and thus the
likelihood function). Experimentally, such an error can lead to highly inaccurate
inference results.

Hence we must synthesize a better continuity correction factor that makes the
approximated model “closest” to the original program’s with respect to a well-
defined distance metric between probability distributions. In this paper, we will
use the common Wasserstein distance, which we describe later in Section 5. The
objective function aims to find the continuity correction factors that minimize
the Wasserstein distance between the original and continualized models.

Figure 3 (a) shows the continualized model. Leios calculated that the optimal
values for the first branch are θ1 = 0.00001 (hence the lower bound is 3.99999)
and θ2 = 0.95208 (hence the upper bound is 4.95208) in line 11, and θ3 = 0.00012
(hence the lower bound is 3.500122) for the branch in line 15. Intuitively the
synthesizer found the upper bound 4.95208 so that any sample larger than 4
(which must have come from the right tail of the continualized perfect GPA)
is consumed by the first branch, instead of accidentally being consumed by the
second branch.

Continualization of Probabilistic Programs With Correction 7

Fig. 4: Visual comparison between Model Distribution of Original Program
with Naive Smoothing and Leios (both with β = 0.1)

Another part of the synthesis step is to make sure that approximations do
not introduce run-time errors. Since Interviews is now sampled from Gaus-
sian, there is a small possibility that it could become negative, thus causing
a runtime error (since we later take its square root). By dynamically sampling
the continualized model during the parameter synthesis, as part of a light-weight
auto-tuning step, Leios checks if such an error exists. If it does, Leios can instead
use a Gamma approximation (which is always non-negative).

While continualization incurs additional computational cost, this cost is typi-
cally amortized. In particular, continualization needs to be performed only once.
The continualized model can be then be used multiple times for inference on
different data-sets. Further, we experimentally observed that our synthesis step
is fast. In this example, for all the values of β we evaluated, this step required
only a few hundred iterations to converge to the optimal continuity correction
factors, as shown in Figure 3 (b).

2.3 Improving Inference

Upon constructing the continuous approximation of the model, we now wish to
perform inference by conditioning upon the outcomes of 25 sampled students.
To make a fair comparison, we compile both the original and continuous versions
down to Webppl [26] and run MCMC inference (with 3500 samples and a burn-
in of 700). We also seek to understand how smoothing latent variables improves
inference, thus we also compare against a naively continualized version where
only the observed variable was smoothed using the same β, number of MCMC
samples and burn-in.

Figure 4 presents the distribution of the Offers variable in the original
model, naively smoothed model, and the Leios-optimized model. The continu-
ous approximation achieved by Leios is smooth and unimodal, unlike the naively
smoothed approximation, which is highly multimodal. However all models have
similar means

Using these three models for inference, Figure 5 (a) presents the posterior
distribution of the variable param for each approach. We finally take the mean

8 J. Laurel et al.

(a)

Metric Leios Naive Original

Accuracy 0.058 0.069 0.090

Runtime (s) 0.604 0.631 0.805

(b)

Fig. 5: (a) Posteriors of each method – the true value is equal to 37. (b) Avg.
Accuracy and Inference time; the bars represent accuracy (left Y-axis), the lines
represent time (right Y-axis).

as the point-estimate, τest, of the parameter’s true value τ . Figure 5 (b) presents
the run time and the error ratio, | τ−τestτ |, for each approach (for the given true
value of 37). It shows that our continualized version leads to the fastest inference.

3 Syntax and Semantics of Programs

We present the syntax and semantics of the probabilistic programming language
on which our analyses is defined

3.1 Source Language Syntax

Program ::= DataBlock? ; Model { Stmt+ } ; ObserveBlock?; return Var ;

Stmt ::= skip | abort | Var := Expr | Var := Dist | CONST Var := Expr
| Stmt ; Stmt | { Stmt } | condition (BExpr)
| if (BExpr) Stmt else Stmt | for i = Int to Int Stmt
| while (BExpr) Stmt

Expr ::= Expr ArithOp Expr | f (Expr) | Real | Int | Var

BExpr ::= BExpr or BExpr | BExpr and BExpr | not BExpr
| Expr RelOp Expr | (BExpr)

DataBlock ::= Data:= [(Int | Real)∗]

ObserveBlock ::= for D in Data { factor(Var,D); }
Dist ::= ContDist | DiscDist

ContDist ∈ {Gaussian,Uniform, etc.},DiscDist ∈ {Binomial,Bernoulli, etc.}
ArithOp ∈ {+,−, ∗, /, ∗∗}, f ∈ {log, abs, sqrt, exp}, RelOp ∈ {<,≤,==}

The syntax is similar to the ones used in [24, 51]. Unlike [51], our syntax does include
exact equality predicates, which introduce difficulties during the approximation. To give
the developer the flexibility in selecting which parts of the program to continualize,
we add the CONST annotation. It indicates that the variable’s distribution should not

Continualization of Probabilistic Programs With Correction 9

be continualized. Until explicitly noted, we will not use this annotation in the rest
of the paper. For simplicity of exposition, we present only a single DataBlock and
ObserveBlock, but our approach naturally extends to the cases with multiple data and
observed variables.

Measure Theory Preliminaries Though various semantics have been proposed
[44, 36, 7], we adapt the sub-probability measure transformer semantics of Dahlqvist et
al. [19]. We will use the terms distribution and measure interchangeably.

Definition 1. A program state σ ∈ S is a n-tuple of real numbers: S = Rn where the
ith tuple element corresponds to the ith program variable’s value.

Definition 2. A Σ-algebra on a set X (denoted as ΣX) is a collection of subsets of X
such that (1) X ∈ ΣX and (2) Xi ∈ ΣX ⇒ Xc

i ∈ ΣX (closure under complementation)
and (3) X1, X2 ∈ ΣX ⇒ X1 ∨X2 ∈ ΣX (closure under countable union). The tuple of
(X,ΣX) is called a measurable space. Our semantics is defined on the Borel measurable
space (Rn,B{Rn}) where B{Rn} is the standard Borel Σ-algebra over Rn.

Definition 3. A measure µ over Rn is a mapping from B{Rn} to [0,+∞) such that
µ(∅) = 0 and µ(

⋃
i∈NXi) =

∑
i∈N µ(Xi) when all Xi are mutually disjoint. A probability

measure is a measure that satisfies µ(Rn) = 1 and a sub-probability measure is one
satisfying µ(Rn) ≤ 1. The simplest measure is the Dirac measure denoted as δai(S) =
1 if ai in S else 0. We denote the set of all sub-probability measures as M(Rn).

Definition 4. Given measures µ1, µ2 ∈ M(R), the product measure µ1 ⊗ µ2 ∈ M(R2)
is defined as µ1 ⊗ µ2(B1 ×B2) = µ1(B1)µ2(B2) for B1, B2 ∈ B{R}

Definition 5. Given a measure µ ∈ M(Rn) the marginal measure of a variable xi is
defined as µxi(Bi) = µ(R× ...R×Bi × R...) for Bi ∈ B{R}

Definition 6. A kernel is a function κ : S→ M(Rn) mapping states to measures.

Definition 7. The Lebesgue measure on R (denoted Leb) is the measure that maps
any interval to its length, e.g., Leb([a, b]) = b − a. The Lebesgue measure in Rn is
simply the n-fold product measure of n copies of the Lebesgue measure on R.

Definition 8. A measure µ is absolutely continuous with respect to the Lebesgue mea-
sure Leb (denoted as µ � Leb or simply µ is A.C.) iff for any measurable set S
Leb(S) = 0⇒ µ(S) = 0.

3.2 Semantics

Expression Level Semantics Arithmetic Expression semantics are standard, they
map states σ ∈ Rn to values, equivalently JExprK : Rn → R. Boolean Expression
Semantics, denoted JBExprK, simply return the set of states Bi ∈ B{Rn} satisfying the
Boolean conditional.

JcK(σ) = c JxiK(σ) = σ[xi] Jt1 op t2K(σ) = Jt1K(σ) op Jt2K(σ) Jf(t1)K(σ) = f(Jt1K(σ))

JB1 and B2K = JB1K ∩ JB2K JB1 or B2K = JB1K ∪ JB2K Jnot B1K = Rn \ JB1K

Je1 relop e2K = {σ ∈ Rn | Je1K(σ) relop Je2K(σ)}

10 J. Laurel et al.

Distribution Semantics The interpretation of a distribution is a kernel, κ, map-
ping a state to the measure associated with the specific parametrization of the dis-
tribution in that state. Since measures are set functions we will represent them as λ
abstractions. The signature is JDistK : Rn → (B{R} → [0, 1])

κCont(σ) = JContDist(e1, e2, ...)K(σ) = λS.

∫
v∈R

1S(v) · fCont(v; Je1K(σ), Je2K(σ), ...)

κDisc(σ) = JDiscDist(e1, e2, ...)K(σ) = λS.
∑

v∈Supp∩S

fDisc(v; Je1K(σ), Je2K(σ), ...)

Where fCont and fDisc are the density and mass functions, respectively, of the prim-

itive distribution being sampled from (e.g., fGauss(x;µ, σ) = 1

σ
√
2π
e

−(x−µ)2

2σ2 · 1{σ>0})
and Supp is the distribution’s support.

Statement Level Semantics The statement-level semantics are shown in Figure
6. We interpret each statement as a (sub) measure transformer, hence the semantic
signature is JStatementK : M(Rn) → M(Rn) . The skip statement returns the original
measure and the abort statement transforms any measure to the 0 sub-measure. The
condition statement removes measure from regions not satisfying the Boolean guard
B. The factor statement can be seen as a “smoothed” version of condition that uses g,
a function of the observed data and its distribution, to re-weight the measure associated
with a set by some real value in [0, 1] (as opposed to strictly 0 or 1). Deterministic
assignment transforms the measure into one which assigns to any set of states S the
same value that the original measure µ would have assigned to all states that end
up in S after executing the assignment statement. Probabilistic Assignment updates
the measure so that xi’s marginal is the measure associated with Dist, but with the
parameters governed by µ.

An if else statement can be decomposed into the sum of the true branch’s mea-
sure and the false branch’s measure. The while loop semantics are the solution to the
standard least fixed point equation [19], but can also be viewed as a mixture distri-
bution where each mixture component corresponds to going through the loop k times.
A for loop is just syntactic sugar for a sequencing of a fixed number of statements.
We note that the Data block does not affect the measure (it is also syntactic sugar,
and could simply be inlined in the Observe block). The program can be thought of as
starting in some initial input measure µ0 where each variable is undefined (which could
simply mean initialized to some special value or even just zero), and as each variable
gets defined, that variable’s marginal (and hence the joint measure µ) gets updated.

4 Continualizing Probabilistic Programs

Our goal is to synthesize a new continuous approximation of the original program P .
We formally define this via a transformation operator T βP [•]: Program → Program.
Our approach operates in two main steps:

(1) We first locally approximate the program’s prior and latent variables using a series
of program transformations to best preserve the local structural properties of the
program and then apply smoothing globally to ensure that the likelihood function
is both fully continuous and differentiable.

Continualization of Probabilistic Programs With Correction 11

JskipK(µ) = µ JabortK(µ) = λS.0 JP1;P2K(µ) = JP2K(JP1K(µ))

Jcondition(B)K(µ) = λS.µ(S∩ JBK) Jfactor(xi,t)K(µ) = λS.

∫
Rn

1S ·g(t, σ) ·µ(dσ)

Jxi := eK(µ) = λS.µ({(x1, ..., xn) ∈ Rn | (x1, ..., xi−1, JeK(x1, ..xn), xi+1..., xn) ∈ S})

Jxi := Dist(e1,...ek)K(µ) = λS.

∫
Rn
µ(dσ)·δx1⊗...δxi−1⊗JDist(e1,...ek)K(σ)⊗δxi+1 ...(S)

Jif (B) {P1} else {P2}K(µ) = JP1K(Jcondition(B)K(µ))+JP2K(Jcondition(not B)K(µ))

Jwhile (B) { P1 }K(µ) =

∞∑
k=0

J(condition(B); P1)k; condition(not B)K(µ)

Fig. 6: Denotational Semantics of Probabilistic Programs

(2) We next synthesize a set of parameters that (approximately) minimize the distance
metric between the distributions of the original and continualized models and we
use light-weight auto-tuning to ensure the approximations do not introduce run-
time errors.

4.1 Overview of the Algorithm

Algorithm 1 presents the technique for continualizing programs. It takes as input a
program P containing a prior or observed variable that is discrete (or hybrid) and
returns T βP [P], a probabilistic program representing a fully continuous random variable
with a differentiable likelihood function. The algorithm uses a tunable hyper-parameter
β ∈ (0,∞) to control the amount of smoothing (like in [14]). A smaller β leads to less
smoothing, while a larger β leads to more smoothing, however the smallest β does not
always lead to the best inference, and vice-versa, as can be seen in section 7.

In line 3 of Algorithm 1 Leios constructs a standard control flow graph (CFG)
to represent the program, using a method called GetCFG(). This data structure will
form the basis of Leios’s future analyses. Each CFG node corresponds to a single
statement and contains all relevant attributes of that statement. Leios then uses this
CFG to build a data dependency graph (line 4) which will be used for checking which
variables are tainted by the approximations. In line 5 Leios then applies T βP [•] to
obtain a continualized sketch, PC . Lastly, Leios synthesizes the optimal continuity
correction parameters (line 7), and in doing so, samples the program to detect if a
runtime error occurred, also returning a Boolean flag success to convey this information.
If a runtime error did occur we find the expression causing it (line 9) and then in
lines 10-12 reapply the safer transformations (e.g., Gamma instead of Gaussian) to all
possible dependencies which could have contributed to the runtime error.

4.2 Distribution and Expression Transformations

To continualize each variable, Leios mutates the individual distributions and expres-
sions assigned to latent variables within the program. We use a transform operator for
expressions and distributions T βE [•]: Expr∪Dist→ Expr∪Dist, which we define next.

12 J. Laurel et al.

Algorithm 1: Procedure for Continualizing a Probabilistic Program

1 function Continualize (P, β);
Input : A probabilistic program P containing discrete/hybrid observable

variables and/or priors and a smoothing factor β > 0
Output: A fully continuous probabilistic program PC

2 Acceptable ← False;
3 CFG ← GetCFG(P);
4 DataDepGraph← ComputeDataFlow(CFG);

5 PC ← T βP [P]; /* apply all continuous transformations */

6 while not Acceptable do
7 PC , success ← Synthesize(PC , P);
8 if not success:
9 D ← getInvalidExpression();

10 Deps ← getDependencies(DataDepGraph,D);
11 forall Expression in Deps do
12 PC ← reapplySafeTransformation(PC , Expression);
13 else:
14 Acceptable ← True;

15 end
16 return PC

Transform Operator For Distributions and Expressions We now detail
the full list of continuous probability distribution transformations that T βE [•] uses.

T βE [E] =

Gaussian(λ,
√
λ) E = Poisson(λ)

Gamma(λ, 1) E = Poisson(λ) & Gaussian fails

Gaussian(np,
√
np(1− p)) E = Binomial(n, p)

Gamma(n, p) E = Binomial(n, p) & Gaussian fails

Uniform(a, b) E = DiscUniform(a, b)

Exponential(p) E = Geometric(p)

MixOfGaussβ([(1, p), (0, 1− p)]) E = Bernoulli(p)

Beta(β, β 1−p
p

) E = Bernoulli(p) & MixOfGauss fails

Mixture([(T βE [D1], p1), ...(T βE [D2], p2)]) E = Mixture([(D1, p1), ...(D2, p2)])

Gaussian(c, β) E = c (constant)

E E = a·xi+b (a 6=0)

KDE(β) E ∈ DiscDist & not covered

Gaussian(E, β) otherwise

The rationale for this definition is that these approximations all preserve key struc-
tural properties of the distributions’ shape (e.g., the number of modes) which have been
shown to strongly affect the quality of inference [25, 45, 17]. Second, these continuous
approximations all match the first moment of their corresponding discrete distributions,
which is another important feature that affects the quality of approximation [53]. We
refer the reader to [54] to see that for each distribution on the left, the corresponding

Continualization of Probabilistic Programs With Correction 13

continuous distribution on the right has the same mean. These approximations are best
when certain limit conditions are satisfied, e.g. λ ≥ 10 for approximating a Poisson dis-
tribution with Gaussian, hence the values in the program itself do affect the overall
approximation accuracy.

However, if we are not careful, a statement level transformation could introduce
runtime errors. For example, a Binomial is always non-negative, but its Gaussian ap-
proximation could be negative. This is why T βE [•] has multiple transformations for the
same distribution. For example, in addition to using a Gaussian to approximate both a
Binomial and a Poisson, we also have a Gamma approximation since a Gamma distri-
bution is always non-negative. Likewise we have a Beta approximation to a Bernoulli
if we require that the approximation also have support in the range [0, 1]. Leios uses
auto-tuning to safeguard against such errors during the synthesis phase, whereby when
sampling the transformed program, if we encounter a run-time error of this nature,
we simply go back and try a safer (but possibly slower) alternative (Algorithm 1 line
12). Since there are only finitely many variables and (safer) transformations to apply,
this process will eventually terminate. For discrete distributions not supported by the
specific approximations, but with fixed parameters, we empirically sample them to get
a set of samples and then use a Kernel Density Estimate (KDE) [62] with a Gaussian
kernel (the KDE bandwidth is precisely β) as the approximation.

Lastly, by default all discrete random variables become approximated with contin-
uous versions, however we leave the option to the user to manually specify CONST in
front of a variable if they do not wish for it to be approximated (in which case we no
longer make any theoretical guarantees about continuity).

4.3 Influence Analysis and Control-Flow Correction of Predicates

Simply changing all instances of discrete distributions in the program to continuous
ones is not enough to closely approximate the semantics of the original program. We
additionally need to ensure that such changes do not introduce control flow errors into
the program, in the sense that quantitative properties such as the probability of taking
a particular branch need to be reasonably preserved.

Avoiding Zero Probability Events A major concern of the approximation is
to ensure that no zero-probability events are introduced, such as when we have an
exact equality “==” predicate in an if, observe or while statement and the vari-
able being checked was transformed from a discrete to a continuous type. For example,
discrete programs commonly have a statement like x := Poisson(1) followed by a con-
ditional such as if (x==4), because the probability that a discrete random variable
is exactly equal to a value can be non-zero. However upon applying our distribution
transformations and transforming the distribution of x from a discrete Poisson to a con-
tinuous Gaussian, the conditional statement “if (x==4)” now corresponds to a zero
probability (or measure zero) event, as the probability that an absolutely continuous
probability measure assigns to the singleton set {4} is by definition zero. Thus, if not
corrected for, we could significantly change the probabilities of taking certain branches
and hence the overall distribution of the program.

The converse can also be true: applying approximations can make a zero proba-
bility event in the original program now have non-zero probability. For example, in
x := DiscUniform(1,5); if (x<3 and x>2) the true branch has probability zero of
executing but this becomes non-zero after approximations are applied. However, the
branch paths like these in the original model could be identified by symbolic analysis
(e.g., [24]) and removed via dead code elimination during pre-processing.

14 J. Laurel et al.

Correcting Control Flow Probabilities via Static Analysis To prevent
zero-probability events and ensure that the branch execution probabilities of the con-
tinualized program closely matches the original’s, we use data dependence analysis to
track which if, while or condition statements have logical comparisons with vari-
ables “tainted” by the approximations. A variable v is “tainted” if it has a transitive
data dependence on an approximated variable, and we use reaching definitions analysis
[35] on the program’s CFG to identify these.

As shown in Algorithm 1 line 4, to compute the reaching definitions analysis we use
a method called ComputeDataFlow() as part of a pre-transformation pass whereby for
each program point in the CFG, each variable is marked with all the other variables
on which it has a data-dependence. These annotations are stored in a data structure
called DataDepGraph which maps nodes (program points) to sets of tuples where
each tuple contains a variable, the other variables it depends on (and where they are
assigned), and lastly, whether it will become tainted. Note that in the algorithm this
step is done before the previously discussed expression-level transformations, hence why
ComputeDataFlow() marks which variables will become continualized and which ones
will not (i.e if a variable already defines a continuous random variable or was annotated
with CONST). Furthermore, though we are computing the data dependencies before the
approximations, because the approximations do not re-order or remove statements, all
data dependencies will be the same before and after applying the approximations.

Transform Operator For Boolean Expressions We take all such control
predicates that contain an exact equality “==” comparison with a tainted variable and
transform these predicates from exact equality predicates to interval-style predicates.
Thus if we originally had a predicate of the form if(x==4) we will mutate this into a
predicate of the form if(x>4-θ1 && x<4+θ2) where θ are now placeholder values that
will need to be filled with a concrete value during the synthesis phase (Section 5). Hence
checking for exact equality gets relaxed to checking for containment within the interval
(4− θ1, 4 + θ2). We also need to correct < and <= predicates if one of the variables was
approximated or transitively affected by an approximation.

Hence we also define our transform operator T βB [•] : BExpr → BExpr at the level
of Boolean expressions:

T βB [(x == y)] =

{
(y − θ1 < x) and (x < y + θ2) default

(x == y) CONST x and CONST y specified

T βB [(x < y)] =

{
(x < y + θ) if x or y tainted

(x < y) otherwise

T βB [(x ≤ y)] =

{
(x ≤ y + θ) if x or y tainted

(x ≤ y) otherwise

Because we have already pre-computed DataDepGraph one can check if a variable in
a given statement or expression is tainted (or marked as CONST) in constant time.

This correction has a natural interpretation in classical probability theory. It is
well known that to approximate a discrete distribution X with a continuous one X̂,
we need a continuity correction factor, θ, such that P (X < x) ≈ P (X̂ < x+ θ) (hence
why T βB [•] also corrects < and <= predicates). For simple approximations (i.e Binomial
to Gaussian), the canonical correction factor is known (θ = 0.5) [23], however for the
general case, it is not. Furthermore, it has been shown that in many cases, 0.5 is not
the best correction factor [3].

Continualization of Probabilistic Programs With Correction 15

4.4 Bringing it all together: Full Program Transformations

Having defined the transformation for distributions, arithmetic and Boolean expres-
sions, we now define the program transformation operator T βP [•]: Program→ Program
inductively:

T βP [P1;P2] = T βP [P1]; T βP [P2]

T βP [if (B) {P1} else {P2}] = if (T βB [B]) T βP [P1] else T βP [P2]

T βP [while(B) P1] = while(T βB [B]) T βP [P1]

T βP [condition(B)] = condition(T βB [B])

T βP [x := E] = x := T βE [E]

T βP [CONST x := E] = x := E

The abort, factor and skip statements and the DataBlock remain the same after
applying the transformation operator T βP [•].

Ensuring Smoothness Upon applying the statement-level transformations and
performing both dataflow analysis and predicate mutations, Leios ensures each latent
variable comes from a continuous distribution. However a continuous distribution may
still have jump discontinuities or non-differentiable regions in its density function (such
as a uniform distribution), which can make inference difficult [66]. Furthermore it is
known that performing parameter estimation on data that is distributed according
to a discontinuous or non-smooth density function, or on distributions with a non-
smooth likelihoods can be just as challenging [50, 1, 59]. Thus to make the Program’s
likelihood function and density function of the observed data fully smooth, we need to
apply additional Gaussian smoothing.

Since it would be redundant to apply smoothing if we already knew this variable
came from a smooth distribution (as in the example) hence we make this simple check
first. The following transformation performs this on the observed variables (which
appear in the factor statement).

T βP [xo := E] =

{
xo := E if x already smooth

xo := Gaussian(E,β); otherwise

We could perform additional smoothing for every variable to ensure each has a
differentiable density, however we empirically observed that the variance added up
enough to where inference quality deteriorated, hence we only apply the additional
smoothing to observed variables.

Having defined the statement-level transformations we now state a theorem about
T βP [•] preserving continuity. As many applications may invoke inference at any point
in the program [46, 60], it is important that absolute continuity of each marginal hold
at every point.

Theorem 1. In the transformed program, T βP [P], the marginal sub-probability measure
of each variable, denoted µxi , is absolutely continuous with respect to the Lebesgue
measure (denoted µxi is A.C.) at each program point for which that variable is defined.

Proof. (sketch) To prove the theorem we will show that when any variable xi is initially
defined, it comes from an absolutely continuous distribution and furthermore that the

16 J. Laurel et al.

semantics of each statement in T βP [P] preserves the absolute continuity of each marginal
measure (where µxi ≡ µ(R× ...×Bi × R...× R)), equivalently for any statement, any
(already defined) variable xi and any Borel set Bi ∈ B{R}:

µ(R× ...×Bi × R...× R) is A.C.⇒ JstatementK(µ)(R× ...×Bi × R...× R) is A.C.

Case 1. skip and abort: Since skip is the identity measure transformer of each de-
fined marginal measure µxi was A.C. before, then they will trivially be so afterward
since they are unchanged. abort sends each marginal to the 0 sub-measure (which
is trivially A.C.).

Case 2. condition and factor: Since factor and condition only lose measure we have
Jcondition(B)K(µ)(S) ≤ µ(S) and Jfactor(xk,t)K(µ)(S) ≤ µ(S) for any Borel set S.
Thus µ(S) = 0⇒ Jcondition(B)K(µ)(S) = 0 and µ(S) = 0⇒ Jfactor(xk,t)K(µ)(S) = 0
since all measures are non-negative. Hence by transitivity, since µ(R×...Bi×R...) is A.C.,
Jfactor(xk,t)K(µ)(S)(R× ...Bi×R...×R) is A.C. and likewise for similar reasons, we
have that Jcondition(B)K(µ)(R× ...Bi × R...× R) is A.C.

Case 3. Assignment: Probabilistic assignment is straightforward. Since the continu-
alized program only samples from absolutely continuous distributions, the marginal
of the sampled variable xi will be A.C. and all other marginals µxj were A.C. by
assumption. Deterministic assignment has to be handled carefully. In the continual-
ized program the only deterministic assignments will be xi := a*xj+b; for a 6= 0 (all
other assignments are smoothed). The marginal µxi(S) is just µxj (aS + b) where the
set aS + b ≡ {s ∈ R | a · s + b ∈ S}. However by assumption of the A.C. of xj ,
Leb(aS + b) = 0 ⇒ µxj (aS + b) = 0, but Leb(S) = 0 ⇔ Leb(aS + b) = 0 [55], hence:
Leb(S) = 0 ⇒ Leb(aS + b) = 0 ⇒ µxj (aS + b) = 0. Lastly by the semantic definition
of xi, we have that µxj (aS + b) = 0⇒ µxi(S) = 0, hence Leb(S) = 0⇒ µxi(S) = 0 by
transitivity. All other marginals are unchanged, hence A.C. of each is preserved.

Case 4. Sequencing, if and while: Intuitively since the above statements each preserve
A.C of each marginal, any sequencing of them should too. Since the sum of two measures
that are both A.C. in each marginal is also A.C. in each marginal, if statements
preserve A.C. of each marginal. For this same reason while loops also preserve A.C.

5 Synthesis of Continuity Correction Parameters
We now present our procedure for synthesizing optimal continuity correction parame-
ters which covers lines 6 to 15 in Algorithm 1. This can be thought of as a “training”
step which fits the continualized model to the original one. It is important to note that
this step is agnostic to the observed data (it only fits to the Model), hence it need only
be done once off-line, regardless of how many times we perform inference on new data
sets. Furthermore, even if we do not have parameters to synthesize, this step is still
useful for catching runtime errors caused by the approximations, so that we can go
back and apply safer approximations if necessary.

5.1 Optimization Framework

Ideally the posteriors of our approximated program T βP [P] and the original P , should
be reasonably close. However a specific posterior is induced by the corresponding data-
set, if our optimization objective tries to minimize the statistical distance from T βP [P]

Continualization of Probabilistic Programs With Correction 17

to P , we would simply be over-fitting to the data and we would not be able to re-use
T βP [P] for new data sets with different true parameters. Instead our objective is to
minimize the distance between the original model M , which is simply the fragment of
P that does not contain the data or observe block (and hence only defines the prior,
likelihood and latent variables), and the corresponding continualized approximation,
T βP [M]. To do so, we need to choose the best possible continuity correction factors,
θ, for T βP [M]. Thus we define the “optimal” parameters as those which minimize a
distance metric d between probability measures d : M(Rn) × M(Rn) → [0,∞). We
also need to ensure that the metric can (a) compute the distance between discrete and
continuous distributions and (b) is such that if models or likelihoods are close with
respect to d, the posteriors should be as well.

Wasserstein Distance We choose to use the Wasserstein distance primarily be-
cause (1) it can measure the distance between a continuous and discrete distribution
(unlike KL-Divergence or Total Variation Distance) and (2) prior work has shown that
when performing inference, if using the Wasserstein distance as the chosen metric to
approximate a likelihood, the (approximate) posteriors induced are comparable to the
true posteriors (obtainable if one used the true likelihood) [49]. Additionally, unlike
other metrics, the Wasserstein metric incorporates the underlying difference in geom-
etry of the distributions (which strongly affects inference accuracy [37, 59]).

Let JMK(µ0) represent the renormalized measure associated to the observed vari-
ables of the original model and let JT βP [Mθ]K(µ0) represent the observed variables of
the continualized model, but where a given continuity correction factor θ has been
substituted in (both measures start in initial distribution µ0). Furthermore, let J ⊆
M(R2) represent the set of all joint measures with marginal measures JMK(µ0) and
JT βP [Mθ]K(µ0). Hence we now define the 1-Wasserstein Distance:

W (JMK(µ0), JT βP [Mθ]K(µ0)) = inf
J∈J

∫
||x− y||dJ(x, y) (1)

We also provide further justification why the Wasserstein Distance is a sensible
metric to use. It is well known that a mixture of Gaussians can converge in distribution
to any continuous random variable, however existing work has shown that a mixture
of Gaussians can approximate any discrete distribution in the Wasserstein Distance
arbitrarily well [20].

Objective Function We now formulate our optimization approach as follows, where
θ̂ is the parameter vector minimizing the Wasserstein Distance with respect to the
original model M , and d is the number of parameters to synthesize.

θ̂ = argmin
θ∈(0,1)d

W (JMK(µ0), JT βP [Mθ]K(µ0)) (2)

To restrict the search space we follow common practice [23, 3] by requiring each θi ∈
(0, 1). Such optimization problem lacks a closed form solution. Symbolically computing
the Wasserstein Distance is intractable, hence we numerically approximate it via the
empirical Wasserstein Distance (EWD) between observed samples of M and T βP [Mθ].
Because this step is fully dynamic (we run and sample the model), the samples are
conditioned upon successfully terminating, and hence the model’s sub-measure has
been implicitly renormalized to a full probability measure, thus justifying the use of a
fully renormalized measure in equations (1) and (2).

18 J. Laurel et al.

Algorithm 2: Synthesizing Optimal Continuity Correction Parameters

1 Function Synthesize P, T βP [P];

Input : A program P and a continualized sketch T βP [P] with d parameters to
be synthesized

Output: A fully continuous probabilistic program PC and a binary flag
denoting the existence of a runtime error

2 if d==0 then

3 s←sample(T βP [P],n);
4 if s==Error then

5 return T βP [P], false

6 end

7 end
8 else

9 M, T βP [M]←getModel(P, T βP [P]);

10 for θi ∈ Grid([0, 1]d) do

11 p, s← Nelder-Mead(W ,θi,M ,T βP [M],η,ε,n);
12 if s==Error then

13 return T βP [P], false

14 end

15 if W(p) < W(θ̂) then

16 θ̂ ← p

17 end

18 end

19 end

20 return substitute(T βP [P], θ̂), true

Though intuitively we would expect that as we apply less smoothing (i.e. β < 1),
the optimal θi should also be smaller (less need for correction) and the continualized
program should become closer to the original, a simple negative result illustrates this
is not always the case and that the dependence between the smoothing and continuity
correction must be non-linear.

Remark 1. θ̂ cannot be linearly proportional to β.

Proof. Let X be the constant random variable that is 0 with probability 1 and let
X ′ ∼ Gaussian(0, β). Furthermore, let I := (X == 0) and Ic := (cβ ≤ X ′ ≤ cβ) be
two indicator random variables. Intuitively we want Ic to have the same probability of
being true as I for any β. However if c is constant (such as 1) then Pr(cβ ≤ X ′ ≤ cβ)
will always be the same regardless of β (when c = 1, the probability is always 0.68).

5.2 Optimization Algorithm

Algorithm 2 presents our approximate synthesis algorithm, which is called as a sub-
routine in the main algorithm. As seen in line 2, if there are no parameters to be
synthesized (d == 0) we still sample the continualized program in hopes of uncovering
a possible runtime error (or gaining statistical confidence that one does not occur). We

Continualization of Probabilistic Programs With Correction 19

check for such an error in line 4 and if one exists, we return immediately, with the flag
variable set to false (line 5).

To evaluate the EWD objective function (when there are parameters to synthesize),
Algorithm 2 follows a technique from [14] and uses a Nelder-Mead search (line 11),
due to Nelder-Mead’s well known success in solving non-convex program synthesis
problems. We first extract the fragment of the programs corresponding to the models,
M and T βP [M], respectively in line 9. In each step of the Nelder-Mead search we take
n samples (n ≈ 500) of T βP [M], but with a fixed value of θi substituted into T βP [M],
to compute the EWD with respect to samples of the original model M (which have
been cached to avoid redundant resampling). The Nelder-Mead search steps through
the parameter space (with step size η > 0), substituting different values of θ into
T βP [M]. This process continues until the search converges to a minimizing parameter,
p, that is within the stopping threshold ε > 0 or encounters a runtime error during
the sampling (which is checked in line 12). As before, if we encounter such an error we
immediately return with the flag set to false (line 13). Following [14], we successively
restart the Nelder-Mead search from k evenly spaced grid points in [0, 1]d (hence the
loop in line 10), to find the globally optimal parameter (hence our approach is robust
to local minima), which we successively update in lines 15-16. If no runtime error was
ever encountered, we substitute in the parameters with the minimum EWD over all
runs, θ̂, to the fully continuous program T βP [P] and return (line 20). Though it can be
argued this sampling is potentially as difficult as the original inference, we reiterate
that we need only do this once offline, hence the cost is easily amortized.

6 Methodology

6.1 Benchmarks

Table 1 presents the benchmarks. For each benchmark, Columns 2 and 3 present the
original prior and likelihood type, respectively. Column 4 presents whether the conti-
nuity correction was applied. Column 5 presents the time to continualize the program,
TCont.. As can be seen in Columns 4 and 5 the total continualization time, TCont.,
depends on whether parameters had to be synthesized. GPAExample had the longest
TCont. at 3.6s, due to the complexity of the multiple predicates, however these times
are amortized as our synthesis step is done only once.

As our problem has received little attention, no standard benchmark suites exist.
In fact, to make inference tractable, for many models, developers would construct
continuous approximations by hand, in an ad hoc fashion. However we wanted a
benchmark suite that showcased all 3 inference scenarios that our approach works
for: (1) discrete/hybrid prior and discrete/hybrid likelihood (2) continuous prior but
discrete/hybrid likelihood and (3) discrete/hybrid prior but a continuous likelihood.
Therefore, we obtained the benchmarks in two ways. First, we looked at variations
of the mixed distributions benchmarks previously published in the machine learning
community, e.g., [65, 58], which served as the inspiration for our GPAExample. Sec-
ond, we took existing benchmarks [27, 30] for which designers modeled certain distri-
butions with continuous approximations, and we retro-fitted these models with the
corresponding discrete distributions. This step was done for Election, Fairness,

SVMfairness, SVE, and TrueSkill. These discretizations were only applied where they
made sense, e.g., the Gauss(np,np(1-p)) in the original Election program became dis-
cretized as Binomial(n,p). We also took popular Bayesian models from Cognitive
Science literature which use multiple discrete latent variables [39] and these models

20 J. Laurel et al.

Table 1: Description of Benchmarks
Program Prior Likelihood Correction? TCont. (s)

GPAExample Uniform Discrete X 3.643
Election [27] DiscUniform Bernoulli X 1.139
Fairness [2] DiscUniform Bernoulli X 1.809
SVMfairness [2] Binomial Continuous X 1.578
TrueSkill [30] Poisson Bernoulli X 1.149
DiscreteDisease DiscUniform Discrete × 0.006
SVE [58] Uniform Hybrid × 0.009
BetaBinomial [39] Beta Discrete × 0.006
Exam [39] Uniform Discrete × 0.008
Plankton [10] DiscUniform Discrete × 0.006

are BetaBinomial and Exam. Lastly we took population models from the mathematical
biology literature [10, 4] to build benchmarks since populations are by nature discrete.
This was done for Plankton and DiscreteDisease. We present the original programs
in the appendix [38].

Implementation We implemented Leios in Python (∼4.5K LoC). All experiments
were run on an Intel Xeon, multi-core desktop running Ubuntu 16.04 with a 3.7 GHz
CPU and with 32GB RAM. All results are obtained from single-core executions.

6.2 Experimental Setup

Continualized Versions As there are no other general tools that automatically
continualize probabilistic programs in mainstream languages, we compare Leios with:

– Original Program : inference done in standard fashion on the original model, and

– Naive Smoothing : inference done on a KDE style model in which Gaussian smooth-
ing is applied only to the observed variable, but no approximations are applied to
the inner latent variables.

We will refer to these as simply “Original” and “Naive” respectively.

Inference Accuracy Comparison using Ground Truth Our experimental
design compares the respective inference estimates with the ground truth. We set the
experiments as follows: For each of the original discrete or hybrid programs P , we
replace the program variable corresponding to the prior distribution with a fixed value
τ (the ground-truth) to obtain P (τ). We then sample P (τ) to obtain 25 observed
data points, which will be used to test inference performance on P , PNS, and PLeios

respectively. To test inference performance we then score P (original program), PNS

(naively smoothed program), and PLeios against the observed data points to infer the
posterior over the ground truth parameter τ . Note the programs only have access to
the data samples, but not τ .

For each of the 3 versions: P , PNS , and PLeios, we take the inferred posterior means
as the estimates of the value, and then compare it with the ground-truth value τ to
measure the error ratio E =

∣∣ τ−τest
τ

∣∣. This entire procedure is repeated for 10 different
values of τ to get a representative average of inference performance over a wide range
of true parameter values.

Continualization of Probabilistic Programs With Correction 21

Table 2: Inference Times (s) and Error Ratios for each model, β = 0.1
Program Original Original Naive Naive Leios Leios

Time Error Time Error Time Error

GPAExample 0.806 0.090 0.631 0.070 0.605 0.058
Election - - 3.232 0.051 0.616 0.036
Fairness 4.396 0.057 0.563 0.056 0.603 0.093
SVMfairness - - 0.626 0.454 0.980 0.261
TrueSkill 3.668 0.009 0.494 0.059 0.586 0.053
DiscreteDisease 4.944 0.009 1.350 0.013 0.490 0.008
SVE - - 0.522 0.045 0.516 0.091
BetaBinomial 1.224 0.028 0.564 0.024 0.459 0.013
Exam 3.973 0.087 0.504 0.126 0.527 0.133
Plankton 0.570 0.017 0.457 0.080 0.453 0.042

Average 2.797 0.043 0.894 0.098 0.584 0.079

Analyzed Probabilistic Programming Systems. We used two languages in
our development: WebPPL [26] (with MCMC inference) and Pyro [8] (with Varia-
tional inference). Our implementation automatically generates WebPPL code for all
the programs. We used 3500 MCMC samples (with burn-in of 700 samples) in the
simulation. For Pyro, we only wanted to test fully-automatic black-box Variational In-
ference, hence we did not manually marginalize out discrete variables (which is often
not even applicable, as the discrete variables are the one we wish to estimate).

Inference Time Measurement We measure the time taken for inference for each
version using built-in timers (which exclude file reading and warm-up). A timeout of
10 minutes was used for the inference step. We used this same procedure for both
MCMC-based sampling in WebPPL and Variational Inference in Pyro.

7 Evaluation

We study the following three research questions:

RQ1 Can program continualization make inference faster, while still maintaining a
high degree of accuracy, compared to the original program and naive smoothing?

RQ2 How do performance and accuracy vary for different smoothing factors β?

RQ3 Can program continualization enable running transformed programs with off-
the-shelf inference algorithms that cannot execute the original programs?

7.1 RQ1: Benefits of Continualization

Table 2 presents detailed timing and accuracy errors for a single smoothing factor β
on WebPPL programs. Columns 2 and 3 present the time and error (compared to the
ground truth) for the original program. Columns 4 and 5 present time/error for the
naive smoothing and Columns 6 and 7 present time/error for Leios.

From Table 2 we can see that on average, Leios leads to faster inference than
both the Original (no approximations) and Naive (0.584s vs 2.797s and 0.894s, respec-
tively). The Naive version was also faster than the original, giving more evidence that
continuous models (even when just the observed variable is continualized) yield faster
inference.

22 J. Laurel et al.

(a) Avg. Inference Time (b) Avg. Error Ratio

Fig. 7: Inference Times and Error ratios for Leios and Naive for different β

For accuracy, inference performed via Leios was on average more accurate than
Naive (E = 0.079 vs. 0.098, respectively). Both were slightly less accurate than infer-
ence performed on Original (E = 0.043). This is not unreasonable as Original has no
approximations applied (which are the main source of inference error). However the
Original failed on Election, SVE, and SVMfairness. For Election, a large Binomial
latent led to a timeout, and it also slowed the Naive version relative to Leios (3.23s vs
0.61s). The Original failed on SVE since it is a hybrid discrete-continuous model (which
can make inference intractable [65, 6]). SVMfairness is a non-linear model where many
latent variables have high variances, leading to inference on the Original failing to con-
verge; Leios and Naive had higher error on this benchmark, for much the same reason
(though Leios was still significantly better than Naive, E = 0.261 vs 0.454).

Although Leios was faster than Original in all cases, for TrueSkill and SVMfairness,
Leios was somewhat slower than Naive. This is likely because the discrete latent vari-
ables in these benchmarks had small enough parameters (Binomial with small n). Sim-
ilarly, for Fairness, Leios was slightly less accurate than Naive because the Gaussian
approximation can be less accurate for smaller n.

7.2 RQ2: Impact of Smoothing Factors

Figure 7 presents the average inference times and ERs for different smoothing factors
β. In both cases, X-axes represent smoothing factors. The Y-Axis of the left subfigure
presents time, and Y-Axis of the right presents error ratio compared to the ground
truth (less is better).

Figure 7 (a) shows that Inference on the programs constructed by Leios is non-
trivially faster than inference done on the naively smoothed version, regardless of the
β used (which has negligible affect on the inference time for the β we examined).

Figure 7 (b) presents how accuracy directly depends on β. The Error Ratio for Leios
reaches a local minimum when β = 0.1. Because Leios achieves “global” smoothing by
approximating each latent, a larger value for β is not needed (unlike Naive). We also
noticed for many benchmarks, smaller β led to better continuity correction parameters
which also leads to better inference. Naive’s performance suffers for smaller β, which
we attribute to small β creating a highly multimodal observed variable distribution
(also presented in Section 2) which hampers inference [37, 59]. Consequently, Naive
performs best when β = 0.5, however this β introduces non-trivially higher variance,
which may often negatively affect the precision of inference.

Continualization of Probabilistic Programs With Correction 23

Table 3: Variational Inference Times (s) and Error Ratios for selected β

β : 0.25 β : 0.5 β : 0.75
Program Torg Eorg TNS ENS TLeios ELeios TLeios ELeios TLeios ELeios
GPAExample - - - - 3.111 0.207 3.341 0.241 3.435 0.321
Election - - - - 1.762 0.070 1.755 0.110 1.764 0.064
Fairness - - - - 1.813 0.722 1.827 0.769 1.830 0.753
SVMfairness - - - - 1.800 0.201 1.806 0.293 1.804 0.301
TrueSkill - - - - 1.809 0.119 1.802 0.062 1.790 0.090
DiscreteDisease - - - - 1.734 0.248 1.731 0.471 1.747 0.553
SVE 0.677 0.684 1.478 3.095 1.471 0.587 1.460 0.566 1.448 0.348
BetaBinomial - - - - 1.605 0.834 1.596 0.708 1.587 0.497
Exam - - - - 0.603 0.222 0.602 0.213 0.603 0.285
Plankton - - - - 3.432 0.297 3.427 0.763 3.434 0.530

7.3 RQ3: Extending Results to Other Systems

Table 3 presents the results for running translated programs in Pyro. Columns 2-5
present the inference times and result errors for the original and naively smoothed pro-
gram. These columns are “-” when Pyro cannot successfully perform inference (i.e. the
model contains a discrete variable that is unsupported by the auto guide). Columns 6-11
present Leios’ time and error for each model, for three different smoothing parameters.

Fully-automated Variational Inference failed on all but one of the examples for
both the Original and Naive. This is because in both cases the program still contains
latent or observed discrete random variables. For most of the benchmarks (Election,
GPA, TrueSkill) the program optimized with Leios had errors comparable to those
computed previously with MCMC in WebPPL. For some the error was over 0.5 for all
β (BetaBinomial, Fairness), which is in part a consequence of limitations of automatic
VI, and hence for certain models manual fine-tuning may be unavoidable. These results
illustrate that Leios can be used to create an efficient program in situations when the
original language does not easily support non-continuous distributions.

8 Related Work

Probabilistic Program Synthesis To the best of our knowledge, we are the
first to study program transformations that approximate discrete or hybrid discrete-
continuous probabilistic programs with fully continuous ones to improve inference.
Probabilistic program synthesis takes a more ambitious task of generating probabilis-
tic programs with certain properties directly from data. For instance, Nori et al. [51]
aim to synthesize a probabilistic program given a program sketch and a data-set to
fit the program to. However, it merely fits the distribution parameters to the sketch.
Furthermore their language lacks ‘==’ comparisons. Chasins et al. [11] takes a similar
approach but only apply continuous approximations to already continuous variables.

Probabilistic Inference with Discrete and Hybrid Distributions Re-
cent work [65, 66] has explored developing languages and semantics to encode discrete-
continuous mixtures, however these all restrict the types of programs that can be

24 J. Laurel et al.

expressed and require specialized inference algorithms. In contrast, Leios can work
with a variety of off-the-shelf inference algorithms that operate on arbitrary models
and does not need to define its own inference algorithm. In [66] the authors explored
a restricted programming language that can statically detect which parameters the
program’s density is discontinuous in. However they did not address the question of
continuous approximation, rather their approach was to develop a custom inference
scheme and restrict the language so that pathological models cannot be written (they
also disallow ‘==’ predicates). In [65], Wu et al. develop a custom inference method for
discrete-continuous mixtures but only for models encodeable as a Bayesian network,
furthermore as pointed out by [47], the specialized inference method of Wu et al. is
restrictive since it cannot be composed with other program transformations.

Additionally, Machine Learning researchers have developed other continuous relax-
ation techniques to address the inherent problems of non-differentiable models. One
other popular method is to reparametrize the gradient estimator during Variational
Inference (VI) computation, commonly called the “reparameterization trick” [42, 61].
However, this approach suffers from the fact that not all distributions support such
gradient reparameterizations, and also this method is only limited to Variational In-
ference. Conversely our approach allows one to still use any inference scheme. Further,
even though these techniques have been attempted in the probabilistic programming
setting, [40], such work still inherits the aforementioned weaknesses.

We also draw upon Kernel Density Estimation (KDE) [62], a common approxima-
tion scheme in statistics. KDE fits a Kernel density to each observed data point, hence
constructing a smooth approximation. Naive Smoothing is essentially a KDE (with
a Gaussian Kernel) of the original while Leios employs additional continualizations.
Furthermore, our smoothing factor β is analogous to the bandwidth of a KDE.

Program Analysis for Probabilistic Programs Multiple Program Analysis
frameworks and systems have been developed for Probabilistic Programming [57, 33,
63, 32, 22]. Additionally these analyses make use of a rich set of semantics [44, 36, 7,
64, 19], however of particular note is recent work by Lew et al. [41], which provides
a type system for reasoning about variational approximations; however they focus on
continuous approximations of already continuous variables.

Benefits of Continuity in Conventional Programs The idea of smoothing
and working with continuous functions in non-probabilistic programs has found success
in a variety of applications [21, 12, 34, 13]. Our work derives inspiration mainly from
Smooth interpretation [14], which provides a semantics for smoothing deterministic
programs encoding a discontinuous or discrete function.

9 Conclusion

We presented Leios as a method for approximating probabilistic programs with fully
continuous versions. Our approach shows that by continualizing probabilistic programs,
it is possible to achieve substantial speed-ups in inference performance whilst still
preserving a high degree of accuracy. To this effect we combined two key techniques:
statement level program transformations to continualize latent variables and a novel
continuity correction synthesis procedure to correct branch conditions.

Continualization of Probabilistic Programs With Correction 25

Acknowledgements

We would like to thank the anonymous reviewers for their constructive feedback. We
thank Darko Marinov for his helpful feedback during early stages of the work. We thank
Adithya Murali for valuable feedback about the semantics. We thank Zixin Huang and
Saikat Dutta for helpful discussions about the evaluation and Vimuth Fernando and
Keyur Joshi for helpful proofreads. JL is grateful for support from the Alfred P. Sloan
foundation for a Sloan Scholar award used to support much of this work. The research
presented in this paper has been supported in part by NSF, Grant no. CCF-1846354.

References

1. Aigner, D.J., Amemiya, T., Poirier, D.J.: On the estimation of production fron-
tiers: maximum likelihood estimation of the parameters of a discontinuous density
function. International Economic Review pp. 377–396 (1976)

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: Probabilistic
verification of program fairness. Proc. ACM Program. Lang. (OOPSLA) (2017)

3. Bar-Lev, S.K., Fuchs, C.: Continuity corrections for discrete distributions under
the edgeworth expansion. Methodology And Computing In Applied Probability
3(4), 347–364 (2001)

4. Becker, N.: A general chain binomial model for infectious diseases. Biometrics
37(2), 251–258 (1981)

5. Betancourt, M., Girolami, M.: Hamiltonian monte carlo for hierarchical models.
Current trends in Bayesian methodology with applications 79, 30 (2015)

6. Bhat, S., Borgström, J., Gordon, A.D., Russo, C.: Deriving probability density
functions from probabilistic functional programs. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 508–522.
TACAS’13 (2013)

7. Bichsel, B., Gehr, T., Vechev, M.T.: Fine-grained semantics for probabilistic pro-
grams. In: Programming Languages and Systems - 27th European Symposium on
Programming, ESOPh. pp. 145–185 (2018)

8. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karalet-
sos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman, N.D.: Pyro: Deep Universal
Probabilistic Programming. arXiv preprint arXiv:1810.09538 (2018)

9. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: A review for
statisticians. Journal of the American Statistical Association 112(518) (2017)

10. Blumenthal, S., Dahiya, R.C.: Estimating the binomial parameter n. Journal of
the American Statistical Association 76(376), 903–909 (1981)

11. Chasins, S., Phothilimthana, P.M.: Data-driven synthesis of full probabilistic pro-
grams. In: CAV (2017)

12. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative
synthesis using smoothed proof search. In: ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’14 (2014)

13. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. In: Communications of the ACM, Research Highlights. vol. 55 (2012)

14. Chaudhuri, S., Solar-Lezama, A.: Smooth interpretation. In: Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. pp. 279–291. PLDI ’10 (2010)

26 J. Laurel et al.

15. Chen, Y., Ghahramani, Z.: Scalable discrete sampling as a multi-armed bandit
problem. In: Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48. pp. 2492–2501. ICML’16 (2016)

16. Cheng, T.T.: The normal approximation to the poisson distribution and a proof
of a conjecture of ramanujan. Bull. Amer. Math. Soc. 55(4), 396–401 (04 1949)

17. Chung, H., Loken, E., Schafer, J.L.: Difficulties in drawing inferences with finite-
mixture models. The American Statistician 58(2), 152–158 (2004)

18. Cooper, G.F.: The computational complexity of probabilistic inference using
bayesian belief networks. Artificial Intelligence 42(2), 393 – 405 (1990)

19. Dahlqvist, F., Kozen, D., Silva, A.: Semantics of probabilistic programming: A
gentle introduction. In: Foundations of Probabilistic Programming (2020)

20. Delon, J., Desolneux, A.: A wasserstein-type distance in the space of gaussian
mixture models. arXiv preprint arXiv:1907.05254 (2019)

21. DeMillo, R.A., Lipton, R.J.: Defining software by continuous, smooth functions.
IEEE Trans. Softw. Eng. 17(4) (Apr 1991)

22. Dutta, S., Zhang, W., Huang, Z., Misailovic, S.: Storm: program reduction for
testing and debugging probabilistic programming systems. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 729–739 (2019)

23. Feller, W.: On the normal approximation to the binomial distribution. Ann. Math.
Statist. 16(4), 319–329 (12 1945)

24. Gehr, T., Misailovic, S., Vechev, M.T.: PSI: exact symbolic inference for proba-
bilistic programs. In: Computer Aided Verification, CAV. pp. 62–83 (2016)

25. Gelman, A.: Parameterization and bayesian modeling. Journal of the American
Statistical Association 99(466), 537–545 (2004)

26. Goodman, N.D., Stuhlmüller, A.: The Design and Implementation of Probabilistic
Programming Languages (2014)

27. Goodman, N.D., Tenenbaum, J.B., Contributors, T.P.: Probabilistic Models of
Cognition (2016)

28. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proceedings of the on Future of Software Engineering (2014)

29. Gorinova, M.I., Moore, D., Hoffman, M.D.: Automatic reparameterisation in prob-
abilistic programming (2019)

30. Herbrich, R., Minka, T., Graepel, T.: TrueskillTM: A bayesian skill rating system.
In: Proceedings of the 19th International Conference on Neural Information Pro-
cessing Systems. pp. 569–576. NIPS’06 (2006)

31. Hoffman, M.D., Gelman, A.: The no-u-turn sampler: Adaptively setting path
lengths in hamiltonian monte carlo (2011)

32. Huang, Z., Wang, Z., Misailovic, S.: Psense: Automatic sensitivity analysis for
probabilistic programs. In: Automated Technology for Verification and Analysis -
15th International Symposium, ATVA 2018, Los Angeles, California, October 7-10,
2018, Proceedings (2018)

33. Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs.
In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 133–144 (2014)

34. Inala, J.P., Gao, S., Kong, S., Solar-Lezama, A.: REAS: combining numerical op-
timization with SAT solving (2018)

35. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. pp. 194–206. POPL ’73 (1973)

Continualization of Probabilistic Programs With Correction 27

36. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences 22(3), 328 – 350 (1981)

37. Lan, S., Streets, J., Shahbaba, B.: Wormhole hamiltonian monte carlo. In: Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. pp.
1953–1959. AAAI’14 (2014)

38. Laurel, J., Misailovic, S.: Continualization of probabilistic programs with correction
(appendix) (2020), https://jsl1994.github.io/papers/ESOP2020 appendix.pdf

39. Lee, M.D., Wagenmakers, E.J.: Bayesian cognitive modeling: A practical course.
Cambridge University Press (2014)

40. Lee, W., Yu, H., Yang, H.: Reparameterization gradient for non-differentiable mod-
els. In: Advances in Neural Information Processing Systems. pp. 5553–5563 (2018)

41. Lew, A.K., Cusumano-Towner, M.F., Sherman, B., Carbin, M., Mansinghka, V.K.:
Trace types and denotational semantics for sound programmable inference in prob-
abilistic languages. Proc. ACM Program. Lang. 4(POPL) (2019)

42. Maddison, C.J., Mnih, A., Teh, Y.W.: The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables. In: International Conference on Learning
Representations (2017)

43. Marin, J.M., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on
mixtures of distributions. Handbook of statistics 25, 459–507 (2005)

44. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (May 1996)

45. Murray, I., Salakhutdinov, R.: Evaluating probabilities under high-dimensional la-
tent variable models. In: Proceedings of the 21st International Conference on Neu-
ral Information Processing Systems. pp. 1137–1144. NIPS’08 (2008)

46. Nandi, C., Grossman, D., Sampson, A., Mytkowicz, T., McKinley, K.S.: Debugging
probabilistic programs. In: Proceedings of the 1st ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages. MAPL 2017 (2017)

47. Narayanan, P., Shan, C.c.: Symbolic disintegration with a variety of base measures
(2019), http://homes.sice.indiana.edu/ccshan/rational/disint2arg.pdf

48. Neal, R.M.: Mcmc using hamiltonian dynamics. In: Handbook of Markov Chain
Monte Carlo, chap. 5 (2012)

49. Nguyen, V.A., Abadeh, S.S., Yue, M.C., Kuhn, D., Wiesemann, W.: Optimistic
distributionally robust optimization for nonparametric likelihood approximation.
In: Advances in Neural Information Processing Systems. pp. 15846–15856 (2019)

50. Nishimura, A., Dunson, D., Lu, J.: Discontinuous hamiltonian monte
carlo for discrete parameters and discontinuous likelihoods (2017),
https://arxiv.org/abs/1705.08510

51. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 208–217. PLDI ’15 (2015)

52. Opper, M., Archambeau, C.: The variational gaussian approximation revisited.
Neural Computation 21(3), 786–792 (2009)

53. Opper, M., Winther, O.: Expectation consistent approximate inference. J. Mach.
Learn. Res. 6, 2177–2204 (Dec 2005)

54. Ross, S.: A First Course in Probability. Pearson (2010)

55. Rudin, W.: Real and complex analysis. McGraw-Hill Education (2006)

56. Salimans, T., Kingma, D.P., Welling, M.: Markov chain monte carlo and variational
inference: Bridging the gap. In: Proceedings of the 32nd International Conference
on International Conference on Machine Learning. pp. 1218–1226. ICML (2015)

28 J. Laurel et al.

57. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic
programs: inferring whole program properties from finitely many paths. In: Pro-
ceedings of the 34th ACM SIGPLAN conference on Programming language design
and implementation. pp. 447–458 (2013)

58. Sanner, S., Abbasnejad, E.: Symbolic variable elimination for discrete and contin-
uous graphical models. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence. pp. 1954–1960. AAAI’12 (2012)

59. Smith, J., Croft, J.: Bayesian networks for discrete multivariate data: an algebraic
approach to inference. Journal of Multivariate Analysis 84(2), 387 – 402 (2003)

60. Tolpin, D., van de Meent, J.W., Yang, H., Wood, F.: Design and implementa-
tion of probabilistic programming language anglican. In: Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming
Languages. IFL 2016 (2016)

61. Tucker, G., Mnih, A., Maddison, C.J., Sohl-Dickstein, J.: REBAR : Low-variance,
unbiased gradient estimates for discrete latent variable models. In: Neural Infor-
mation Processing Systems (2017)

62. Wand, M., Jones, M.: Kernel Smoothing (Chapman & Hall/CRC Monographs on
Statistics and Applied Probability) (1995)

63. Wang, D., Hoffmann, J., Reps, T.: Pmaf: An algebraic framework for static analysis
of probabilistic programs. In: Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI 2018 (2018)

64. Wang, D., Hoffmann, J., Reps, T.: A denotational semantics for low-level proba-
bilistic programs with nondeterminism. Electronic Notes in Theoretical Computer
Science 347 (2019), proceedings of the Thirty-Fifth Conference on the Mathemat-
ical Foundations of Programming Semantics

65. Wu, Y., Srivastava, S., Hay, N., Du, S., Russell, S.: Discrete-continuous mixtures
in probabilistic programming: Generalized semantics and inference algorithms. In:
Proceedings of the 35th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 80, pp. 5343–5352 (2018)

66. Zhou, Y., Gram-Hansen, B.J., Kohn, T., Rainforth, T., Yang, H., Wood, F.:
LF-PPL: A low-level first order probabilistic programming language for non-
differentiable models. In: The 22nd International Conference on Artificial Intelli-
gence and Statistics, AISTATS. Proceedings of Machine Learning Research, vol. 89,
pp. 148–157 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

