
DEC 5 - 9, 2021 San Francisco, California

Statheros: A Compiler for Efficient Low-
Precision Probabilistic Programming

Jacob Laurel, Rem Yang, Atharva Sehgal, Shubham Ugare, Sasa Misailovic

Department of Computer Science
University of Illinois at Urbana-Champaign

Probabilistic Programs

• Extend normal programs with :

Probabilistic Programs

• Extend normal programs with :

Random Sampling

Conditioning on Data

Posterior over Parameters

x |= Normal(0,1);

Data<Fixed> y = {1.2,…}

Param<Fixed> x;

Probabilistic Programs

var gauss = function(){

return sample(Gaussian({mu: 10, sigma: 2.1}))

}

Probabilistic Programs - Example

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25);

y~
Normal(m*x+b,0.25)

m ~
Uniform(0,10)

b ~
Uniform(0,10)

y~
Normal(m*x+b,0.25)

Probabilistic Programs - Example

m ~
Uniform(0,10)

b ~
Uniform(0,10)

Parameters to be
inferred

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25);

y~
Normal(m*x+b,0.25)

Probabilistic Programs - Example

m ~
Uniform(0,10)

b ~
Uniform(0,10)

Prior
Distributions

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25);

Probabilistic Programs - Example

m ~
Uniform(0,10)

y~
Normal(m*x+b,0.25)

b ~
Uniform(0,10)

Observed Data

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25);

y~
Normal(m*x+b,0.25)

Probabilistic Programs - Example

m ~
Uniform(0,10)

b ~
Uniform(0,10)

Posterior
Distributions

after Inference

m b

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25);

Edge Computing

Bayesian Inference at the Edge

Bayesian Inference at the Edge

How do I run

Bayesian Inference at
the Edge?

Bayesian Inference at the Edge

How do I run

Bayesian Inference at
the Edge?

What about
Constrained

Hardware?

Bayesian Inference at the Edge

How do I run

Bayesian Inference at
the Edge?

What about
Constrained

Hardware?

What about Runtime
Performance?

Bayesian Inference at the Edge

How do I run

Bayesian Inference at
the Edge?

What about
Constrained

Hardware?

What about Runtime
Performance?

Can I have it all?

Idea 1) Get a Ph.D. in ML + Embedded Systems

Idea 1) Get a Ph.D. in ML + Embedded Systems

Idea 1) Get a Ph.D. in ML + Embedded Systems

Est. Time: 5-6 years

Idea 2) Use fully automated Compiler framework

Idea 2) Use fully automated Compiler framework

Statheros

• Embedded in C++

• All MCMC code uses fixed-point arithmetic

• Optimal configurations inferred by compiler

• Full integration with ARM toolchain for edge-device processors

Statheros Compiler Workflow

Statheros Compiler Workflow

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Statheros Compiler Workflow

Fixed-Point
Size Selection

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Distribution
Range

Analysis

Statheros Compiler Workflow

Fixed-Point
Size Selection

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Distribution
Range

Analysis

Statheros Compiler Workflow

MCMC
Likelihood

Range
Analysis

Fixed-Point
Size Selection

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Distribution
Range

Analysis

Statheros Compiler Workflow

MCMC
Likelihood

Range
Analysis

Fixed-Point
Size Selection

Instrumentation &
Optimization

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Distribution
Range

Analysis

Statheros Compiler Workflow

MCMC
Likelihood

Range
Analysis

Fixed-Point
Size Selection

Instrumentation &
Optimization

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Dynamic Checks

Distribution
Range

Analysis
Dynamic Checks

Statheros Compiler Workflow

MCMC
Likelihood

Range
Analysis

Domain-Specific
Optimizations

Fixed-Point
Size Selection

Instrumentation &
Optimization

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Distribution
Range

Analysis

Statheros Compiler Workflow

MCMC
Likelihood

Range
Analysis

Fixed-Point
Size Selection

Instrumentation &
Optimization

0x57 0x65 0x20 0x63 0x6f 0x6e 0x76

0x65 0x72 0x74 0x20 0x68 0x69 0x67

0x68 0x20 0x6c 0x65 0x76 0x65 0x6c

0x20 0x70 0x72 0x6f 0x62 0x61 0x62

0x69 0x6c 0x69 0x73 0x74 0x69 0x63

0x20 0x70 0x72 0x6f 0x67 0x72 0x61

0x6d 0x73 0x20 0x74 0x6f 0x20 0x6f

0x70 0x74 0x69 0x6d 0x69 0x7a 0x65

0x64 0x2c 0x20 0x63 0x6f 0x6d ...

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,…}

Data<Real> Y = {3.7,…}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Dynamic Checks
Domain-Specific

Optimizations

Model ::= Param+ ; Data+ ; DistStmt+ ;

Param ::= Param<Type>(…)

Data ::= Data<Type>(…)

DistStmt ::= Var |= DistExpr | Var |= Expr | Var |= Bexpr? Expr : Expr
| observe(BExpr) | for (i=c1; i < c2; i++){ Var[i]= DistExpr }

DistExpr ::= bernoulli(Expr) | uniform(Expr, Expr) | normal(Expr, Expr)

BExpr ::= BExpr Boolop BExpr | Expr Relop Expr | true | false

Expr ::= Expr ArithOp Expr | Var | c

Type ::= int | real | fixed<c,c> | vector<Type>

ArithOp ∈ {+, -, *, /, **, ...} , Boolop ∈ { ||, &&, ...} , Relop ∈ {<, ==, <=, ...}

Language Syntax

Model ::= Param+ ; Data+ ; DistStmt+ ;

Param ::= Param<Type>(…)

Data ::= Data<Type>(…)

DistStmt ::= Var |= DistExpr | Var |= Expr | Var |= Bexpr? Expr : Expr
| observe(BExpr) | for (i=c1; i < c2; i++){ Var[i]= DistExpr }

DistExpr ::= bernoulli(Expr) | uniform(Expr, Expr) | normal(Expr, Expr)

BExpr ::= BExpr Boolop BExpr | Expr Relop Expr | true | false

Expr ::= Expr ArithOp Expr | Var | c

Type ::= int | real | fixed<c,c> | vector<Type>

ArithOp ∈ {+, -, *, /, **, ...} , Boolop ∈ { ||, &&, ...} , Relop ∈ {<, ==, <=, ...}

Language Syntax

Model ::= Param+ ; Data+ ; DistStmt+ ;

Param ::= Param<Type>(…)

Data ::= Data<Type>(…)

DistStmt ::= Var |= DistExpr | Var |= Expr | Var |= Bexpr? Expr : Expr
| observe(BExpr) | for (i=c1; i < c2; i++){ Var[i]= DistExpr }

DistExpr ::= bernoulli(Expr) | uniform(Expr, Expr) | normal(Expr, Expr)

BExpr ::= BExpr Boolop BExpr | Expr Relop Expr | true | false

Expr ::= Expr ArithOp Expr | Var | c

Type ::= int | real | fixed<c,c> | vector<Type>

ArithOp ∈ {+, -, *, /, **, ...} , Boolop ∈ { ||, &&, ...} , Relop ∈ {<, ==, <=, ...}

Language Syntax

Step 1) Fixed-Point Size Selection

Fixed-Point Size Selection

• Fixed Point numbers given as <I,F>

• I is the amount of integer bits

• F is the amount of fractional bits

• Need enough integer bits for distributions and likelihoods

Fixed-Point Size Selection

How to

determine?

• Fixed Point numbers given as <I,F>

• I is the amount of integer bits

• F is the amount of fractional bits

• Need enough integer bits for distributions and likelihoods

Fixed-Point Size Selection

How to

determine?

• Fixed Point numbers given as <I,F>

• I is the amount of integer bits

• F is the amount of fractional bits

• Need enough integer bits for distributions and likelihoods

Use Interval

Analysis!

Fixed-Point Size Selection - Distributions

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

X ∈ [1.2 , 2.4]

Fixed-Point Size Selection - Distributions

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Y ∈ [14.3 , 20.1]

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

m ∈ [0 , 10]

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

b ∈ [0 , 10]

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-∞ , ∞]

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-∞ , ∞]

Y ∈ [14.3 , 20.1]

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-∞ , ∞]

Y ∈ [14.3 , 20.1]

Need to take bigger of the two

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-∞ , ∞]

Need to take bigger of the two

Can we do better?

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-∞ , ∞]

Need to take bigger of the two

Can we do better?

Yes!

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-∞ , ∞]

Samplers truncate to +/- 6σ

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [m*X+b-6*0.25 , m*X+b+6*0.25]

Samplers truncate to +/- 6σ

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [m*X+b-6*0.25 , m*X+b+6*0.25]

Simplify using Interval Arithmetic

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-1.5 , 35.5]

Simplify using Interval Arithmetic

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Distributions

Y ∈ [-1.5 , 35.5]

X ∈ [1.2 , 2.4]

b ∈ [0 , 10]

m ∈ [0 , 10]

Final Intervals

Fixed-Point Size Selection - Likelihoods

• MCMC requires computing log-likelihoods for acceptance ratio

• Each distribution has different likelihood

• Need Summation over all data samples

Markov Chain Monte Carlo

Markov Chain Monte Carlo

Acceptance Ratio

Markov Chain Monte Carlo

Log-likelihoods

Markov Chain Monte Carlo

Summation over all observed data

Fixed-Point Size Selection - Likelihoods

• How to bound terms like and ?

Fixed-Point Size Selection - Likelihoods

• How to bound terms like and ?

• Propagate interval bounds through each distribution's likelihood

Fixed-Point Size Selection - Likelihoods

• How to bound terms like and ?

• Propagate interval bounds through each distribution's likelihood

• Leverage previously computed intervals!

Fixed-Point Size Selection - Likelihoods

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Log-Likelihood[m] ∈

Computing:

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Log-Likelihood[b] ∈

Computing:

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25) Log-Likelihood[Y] ∈ ???

Computing:

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25) Log-Likelihood[Y] ∈ ???

Leverage previously computed intervals!

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25) Log-Likelihood[Y] ∈

X ∈ [1.2 , 2.4]

b ∈ [0 , 10]

m ∈ [0 , 10]

Y ∈ [-1.5 , 35.5]

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25) Log-Likelihood[Y] ∈

X ∈ [1.2 , 2.4]

b ∈ [0 , 10]

m ∈ [0 , 10] m*X+b ∈ [0 , 34]

Y ∈ [-1.5 , 35.5]

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25) Log-Likelihood[Y] ∈

X ∈ [1.2 , 2.4]

b ∈ [0 , 10]

m ∈ [0 , 10] m*X+b ∈ [0 , 34]

Y ∈ [-1.5 , 35.5]

Fixed-Point Size Selection - Likelihoods

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25) Log-Likelihood[Y] ∈

X ∈ [1.2 , 2.4]

b ∈ [0 , 10]

m ∈ [0 , 10] m*X+b ∈ [0 , 34]

Y ∈ [-1.5 , 35.5]

[-10080.4 , 1.595]

Fixed-Point Size Selection - Proposals
• Still need to bound proposal kernel terms:

&

Fixed-Point Size Selection - Proposals
• Still need to bound proposal kernel terms:

• Proposal kernel has known form (Normal, uniform, etc.)

• xp and xc have known non-infinite interval bounds

• Proposal is symmetric

&

Fixed-Point Size Selection - Proposals

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Computing:

When proposal kernel is
Normal(xc,1)

Fixed-Point Size Selection - Proposals

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Computing:

m ∈ [0 , 10]
b ∈ [0 , 10]

When proposal kernel is
Normal(xc,1)

Fixed-Point Size Selection - Proposals

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Computing:

m ∈ [0 , 10]
b ∈ [0 , 10]

Log-Likelihood[m]= Log-Likelihood[b] ∈

When proposal kernel is
Normal(xc,1)

Fixed-Point Size Selection - Proposals

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Computing:

m ∈ [0 , 10]
b ∈ [0 , 10]

Log-Likelihood[m]= Log-Likelihood[b] ∈

When proposal kernel is
Normal(xc,1)

Fixed-Point Size Selection - Proposals

Param<Real> m;

Param<Real> b;

Data<Real> X = {1.2,2.4}

Data<Real> Y = {14.3,20.1}

m |= Uniform(0,10);

b |= Uniform(0,10);

Y |= Normal(m*X+b,0.25)

Computing:

m ∈ [0 , 10]
b ∈ [0 , 10]

Log-Likelihood[m]= Log-Likelihood[b] ∈ [-50.9, -0.91]

When proposal kernel is
Normal(xc,1)

Fixed-Point Size Selection - MCMC

• We can now bound all terms for

Fixed-Point Size Selection - MCMC

• We can now bound all terms for

Fixed-Point Size Selection - MCMC

• We can now bound all terms for

Fixed-Point Size Selection - MCMC

• We can now bound all terms for

Fixed-Point Size Selection - MCMC

• We can now bound all terms for

Fixed-Point Size Selection - MCMC

• We can now bound all terms for

Number of Observations

Can we get away with less?

Can we get away with less?

Yes!

Can we get away with less?

Yes! Overflows are ok.

• Fixed-Point uses 2's complement integer arithmetic

Fixed-Point Size Selection – Overflows

• Fixed-Point uses 2's complement integer arithmetic

• Wrap-around overflows in Likelihood Summation are ok...

Fixed-Point Size Selection – Overflows

• Fixed-Point uses 2's complement integer arithmetic

• Wrap-around overflows in Likelihood Summation are ok...

Fixed-Point Size Selection – Overflows

...provided final result is within representable range

• Fixed-Point uses 2's complement integer arithmetic

• Wrap-around overflows in Likelihood Summation are ok...

Fixed-Point Size Selection – Overflows

...provided final result is within representable range

Only need enough integer bits for largest single likelihood

Fixed-Point Size Selection

• Given interval bounds how do we choose final size?

Fixed-Point Size Selection

• Given interval bounds how do we choose final size?

• Need a different size for distributions and likelihoods!

Fixed-Point Size Selection

• Given interval bounds how do we choose final size?

• Need a different size for distributions and likelihoods!

Integer Bits

Fixed-Point Size Selection

• Given interval bounds how do we choose final size?

• Need a different size for distributions and likelihoods!

Fractional Bits

Fixed-Point Size Selection

• Given interval bounds how do we choose final size?

• Need a different size for distributions and likelihoods!

Fixed-Point Size Selection

• Given interval bounds how do we choose final size?

• Need a different size for distributions and likelihoods!

Step 2) MCMC Code Instrumentation &
Optimization

Dynamic Checks

• Overflows need to be checked for at runtime

Dynamic Checks

• Overflows need to be checked for at runtime

• Luckily, we don't have to check every arithmetic operation

Dynamic Checks

• Overflows need to be checked for at runtime

• Luckily, we don't have to check every arithmetic operation

• Only check final Acceptance Ratio summation

Domain Specific Optimizations

• MCMC sampling benefits from:

Domain Specific Optimizations

• MCMC sampling benefits from:

• Constant Propagation through the Bayesian Network

Domain Specific Optimizations

• MCMC sampling benefits from:

• Constant Propagation through the Bayesian Network

• Memoization during likelihood computation

How does Statheros perform?

Evaluation - Methodology

• Took multiple benchmarks from the Literature

• Run MCMC for 10K samples + 5k burn-in to get posterior

• Accuracy:

Evaluation - Methodology

• Measure inference runtime and accuracy for Fixed
Point (Statheros) against Float (32-bit) and Double (64-bit)

• Evaluated on 3 devices: Arduino (no FPU), Raspberry Pi and
PocketBeagle

Evaluation - Methodology

• Measure inference runtime and accuracy for Fixed
Point (Statheros) against Float (32-bit) and Double (64-bit)

• Evaluated on 3 devices: Arduino (no FPU), Raspberry Pi and
PocketBeagle

ARM Cortex-M3 84 MHz ARM Cortex-A53 1.4 GHz ARM Cortex-A8 1 GHz

Evaluation - Benchmarks

Benchmark Distributions

Altimeter Bernoulli

Beta-Binomial Beta, Binomial

Burglar Alarm Bernoulli

Electric Power Bernoulli

Gaussian Stan Gaussian

Gender Height Bernoulli, Gaussian

Grass Bernoulli

IQ Stan Uniform, Gaussian

Linear Regression Uniform, Gaussian

Plankton Uniform, Gaussian

SVE Uniform, Triangular, Gaussian

TrueSkill Bernoulli, Gaussian

TwoCoins Bernoulli

Arduino
• Substantial speedup due to

Arduino's lack of FPU

• Statheros GeoMean Speedup:
16.91x (over 64 bit double)

11.54x (over 32 bit float)

• Geomean Relative Error
Statheros: 0.0239

32 bit float: 0.0238

64 bit float: 0.0218

PocketBeagle
• PocketBeagle has low-end

FPU -> still a large speedup

• Statheros GeoMean Speedup:
5.33x (over 64 bit double)

3.77x (over 32 bit float)

• Geomean Relative Error
Statheros: 0.01

32 bit float: 0.01

64 bit float: 0.01

Raspberry Pi
• Raspberry Pi does have an

FPU: speedup not as large

• Statheros GeoMean Speedup:
3.04x (over 64 bit double)

2.15x (over 32 bit float)

• Geomean Relative Error
Statheros: 0.01

32 bit float: 0.01

64 bit float: 0.01

Benchmark Parameter Configuration Likelihood Configuration

Integer Fractional Integer Fractional

Altimeter 7 24 7 24

Beta-Binomial 7 24 19 12

Burglar Alarm 7 24 7 24

Electric Power 7 24 7 24

Gaussian Stan 11 20 19 12

Gender Height 11 20 11 20

Grass 7 24 7 24

IQ Stan 11 20 19 12

Linear Regression 7 24 19 12

Plankton 7 24 7 24

SVE 7 24 19 12

TrueSkill 11 20 7 24

TwoCoins 7 24 7 24

Evaluation - Takeaways

• Statheros faster than float and double on all benchmarks for
Arduino and PocketBeagle

• Inferred Fixed Point configurations tolerate approximation

• Not all overflows are bad!

More in the Paper:

• Detailed Algorithmic Description of Compilation

• Impact of Optimizations

• Discussion of Related Work

Statheros Takeaways

• Probabilistic Programming + Fixed Point Precision offers

Statheros Takeaways

• Probabilistic Programming + Fixed Point Precision offers

Major Runtime Savings!

Statheros Takeaways

• Probabilistic Programming + Fixed Point Precision offers

Major Runtime Savings!

With Small
Quantization

Error!

